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Sign Language Production (SLP) aims to convert text or audio sentences into sign language videos corresponding to their

semantics, which is challenging due to the diversity and complexity of sign languages, and cross-modal semantic mapping

issues. In this work, we propose a Gloss-driven Conditional Difusion Model (GCDM) for SLP. The core of the GCDM is a

difusion model architecture, in which the sign gloss sequence is encoded by a Transformer-based encoder and input into the

difusion model as a semantic prior condition. In the process of sign pose generation, the textual semantic priors carried in

the encoded gloss features are integrated into the embedded Gaussian noise via cross-attention. Subsequently, the model

converts the fused features into sign language pose sequences through T-round denoising steps. During the training process,

the model uses the ground-truth labels of sign poses as the starting point, generates Gaussian noise through T rounds of noise,

and then performs T rounds of denoising to approximate the real sign language gestures. The entire process is constrained

by the MAE loss function to ensure that the generated sign language gestures are as close as possible to the real labels. In

the inference phase, the model directly randomly samples a set of Gaussian noise, generates multiple sign language gesture

sequence hypotheses under the guidance of the gloss sequence, and outputs a high-conidence sign language gesture video by

averaging multiple hypotheses. Experimental results on the Phoenix2014T dataset show that the proposed GCDM method

achieves competitiveness in both quantitative performance and qualitative visualization.
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Fig. 1. The basic idea of the GCDM for SLP. The proposed GCDM takes the sign gloss sequence encoding as a condition and
reversely difuses Gaussian distribution sampling by T -step denoising into sign poses.

1 INTRODUCTION

Sign Language Production (SLP) is a new emerging and challenging task in the computer vision-language ield,

related to natural language processing [69, 73], human pose analysis [2, 12, 30], video analysis [34, 59, 60] and

cross-media reasoning [33, 47, 48], etc. Speciically, SLP is the inverse process of Sign Language Recognition

(SLR) [15, 19, 52], which converts textual sentences into visual representations of sign language. This task requires

the model to understand textual semantics and generate matching sign representations (i.e., sign pose or video)

based on the semantics.

Sign glosses are spoken language words matching the meaning of signs, which are deined as minimal lexical

items. As the basic semantic unit in sign language, gloss plays a crucial transitional role in SLP. Previous SLP

works usually irst translate the spoken language into a gloss sequence through the machine translation model,

and then convert the glosses into a series of sign poses (G2P) [42, 43, 49]. Since G2P is a cross-media task involving

both textual understanding and visual generation, it is more challenging and decisive for the success of SLP. In

this work, we focus on G2P, the core procedure of the SLP task.

For SLP, early works [24, 25] mainly utilize avatar-based and Statistical Machine Translation (SMT) methods,

which require expensive pose pre-capture and struggle to cope with non-matching phrases. Recent eforts towards

SLP try to model the text-to-vision mapping in sign language using deep neural networks [31, 63, 68]. Given the

excellent performance of Generative Adversarial Networks (GANs) on generative tasks, some SLP methods based

on conditional GANs have emerged [42, 45]. These methods generate sign language representations from textual

inputs and optimize SLP by discriminating the authenticity of sequences (i.e., original or generated). Additionally,

some work is devoted to exploring Non-AutoRegressive models to address high inference latency and error

propagation problems in SLP [21, 22]. Another common practice is to use a Transformer-based encoding-decoding

framework that irst encodes the textual inputs and then decodes the textual embeddings into pose sequences of

a given length [43, 67]. The above methods focus on straightforwardly generating visual representations of sign

language from text sequences, which ignores the complexity of text-to-visual cross-modal conversion. In fact,

generating complex dynamic gestures based on scarce textual semantic cues should be a step-by-step process. It

is necessary to gradually approximate the target gesture under semantic guidance, which makes sign language

generation more lexible and inely controlled.

To this end, we propose a novel Gloss-driven Conditional Difusion Model (GCDM) for G2P in the SLP task. As

shown in Figure 1, the core of the proposed GCDM is a difusion model architecture, in which the sign gloss
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sequence is encoded by a Transformer-based encoder and input into the difusion model as a semantic prior

condition. In the process of sign pose generation, the textual semantic priors carried in the encoded gloss features

are integrated into the embedded Gaussian noise via cross-attention. Subsequently, the model converts the

fused features into sign language pose sequences through T-round denoising steps. Besides, a multi-hypothesis

aggregation mechanism is introduced during the inference phase to generate the higher-conidence sign language

pose video. Our main contributions can be summarized as follows:

• We propose a novel Gloss-driven Conditional Difusion Model (GCDM) for SLP, which gradually removes

noise in Gaussian distribution samples to obtain sign pose videos, driven by the gloss semantic prior

condition.

• A multi-hypothesis aggregation mechanism is introduced in the inference phase, which generates multiple

sign language video hypotheses under the guidance of the gloss condition, and outputs higher-conidence

sign poses by averaging the above hypotheses.

• Extensive experiments on the challenging PHOENIX14T [3] dataset demonstrate the superiority of the

proposed method. Ablation studies and qualitative visualizations also verify the contribution of each

component.

2 RELATED WORK

2.1 Sign Language Production

Over the past four decades, sign language research has evolved from isolated Sign Language Recognition

(SLR) [9, 13, 14, 18, 61], continuous Sign Language Translation (SLT) [3, 16, 17, 66, 74], to Sign Language Production

(SLP) [8, 21, 22, 43, 46, 49, 53]. Previous SLP works have focused on avatar-based [11, 24] and Statistical Machine

Translation (SMT) [25, 29] methods, which can generate realistic sign gestures. However, these methods rely on

rule-based lookup of phrases in pre-captured motion databases, thus requiring expensive preprocessing costs and

limited by predeined phrases.

Recently, an increasing number of deep learning models have been applied to SLP tasks, such as RNN-based

models [8, 67, 68], Generative Adversarial Network (GAN) [31, 49, 50, 55], Variational Auto Encoder (VAE) [22, 63]

and Transformers [21, 37, 42, 43, 45, 46, 53]. Early work on deep learning-based SLP considers directly translating

textual descriptions into photo-realistic sign language video (TG2V), which struggles to handle both gesture

accuracy and inger details [8, 70]. The classic approach to the solving of SLP problem is to divide it into three main

sub-tasks [49, 50], namely Text-to-Gloss translation (T2G), Gloss-to-Pose generation (G2P), and Pose-to-Video

synthesis (P2V). P2V is usually regarded as a pure Computer Vision (CV) problem, solved by pose-guided video

synthesis techniques [38, 44, 57]. More works have focused on the G2P sub-task of SLP, which is a challenging

text-to-vision cross-media task [21, 22, 42, 43, 46, 67]. For G2P, Saunders et al. propose a mixture of motion

primitives network, which produces an ininite number of unique sign poses based on a Mixture-of-Expert

(MoE) architecture [46]. To avoid the error accumulation caused by AutoRegression, Hwang et al. irst build a

Gaussian space to learn the generation of each sign pose, and then adopt a non-AutoRegressive model to map

from the source sentence to the target distribution [21]. Besides, Huang et al. propose an external aligner based

on monotonic alignment search for gloss duration prediction, and devise a spatial-temporal graph convolutional

pose generator to produce smoother and more natural sign pose sequences [21].

The Transformer [56] is a sequence-to-sequence learning model based solely on the attention mechanism,

which can transform source sequences into target representations with global dependencies. Transformer-based

models are originally used in the ield of Natural Language Processing (NLP), especially in Neural Machine

Translation (NMT) [39, 54, 64]. Due to the great success of the transformer in NLP, researchers have tried to

generalize it to a wider ield. Some classic computer vision and vision-language models based on Transformer

came into being, such as ViT [10], ViViT [1], DERT [5], Deformable DETR [75], VL-BERT [51], and CLIP [40]. As a
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typical sequence modeling task, SLP shares similar nature with the abovementioned tasks, thus Transformer-based

models have been widely used for SLP [21, 42, 43, 45, 46, 58, 67]. Saunders et al. design a progressive transformer

to generate sign poses in an end-to-end manner [43]. Going a step further, they introduce the adversarial training

scheme into the Transformer framework, learning to distinguish between real and fake sequences to ensure

the production of realistic and expressive poses [42]. Zelinka et al. devise the feed-forward transformer and

recurrent transformer to convert the input Czech text into a sequence of skeletal poses [67]. In addition, Viegas

et al. propose a dual encoder Transformer able to generate manual signs as well as facial expressions from both

sign text and gloss annotations [58].

However, the above methods focus on tackling the conversion from glosses to poses and itting between output

poses and ground truth, while ignoring the mining of semantic cues from the textual input, which may make it

diicult for the obtained poses to cover the original intended meaning. In contrast, our approach is devoted to

strengthening semantic learning of the source sentence and enhancing the traction role of textual clues during

the pose generation.

2.2 Difusion Model

Difusion models have recently emerged as a powerful class of generative models, ofering a promising alternative

to traditional approaches like GANs [31, 50, 55] and VAEs [22, 63]. These models, inspired by the physics of

difusion processes, aim to learn the gradual transition from a simple, unstructured distribution to a complex,

data-like distribution. The key idea behind difusion models is to reverse a difusion process that gradually adds

noise to the data, thus generating novel and realistic samples. Difusion models originate from applications in

the ield of computer vision generation and have also achieved great success in tasks such as natural language

generation [7, 72], multi-modal learning [26, 65], and waveform signal processing [6, 28].

For some time, difusion models have demonstrated remarkable capabilities, especially in the domain of image

synthesis [41, 71]. However, their application to video generation, particularly for complex tasks like human

pose video generation, remains relatively unexplored. Human pose video generation presents unique challenges,

such as maintaining temporal coherence and generating realistic movements across frames. Several studies have

attempted to tackle these challenges using various techniques. For instance, Hasegawa et al. [20] propose a method

that combines convolutional neural networks with recurrent neural networks to generate sequences of human

poses. While their approach achieves some degree of temporal coherence, it often struggles with generating

realistic movements, especially for long sequences. More recently, Luo et al. [36] introduce a difusion-based

model speciically designed for video generation. Their model, while showing promising results in general video

synthesis tasks, does not directly address the speciic challenges of human pose generation in a targeted manner.

This work builds upon these prior eforts by introducing a novel difusion model tailored for sign language

pose video generation. Our approach incorporates gloss semantic priors and leverages the expressive power of

difusion models to generate realistic and coherent sign pose sequences. By gradually reining the modeling of

sign language poses, our model achieves superior performance compared to previous methods.

2.3 Multi-Hypothesis Aggregation

In the realm of sign language pose generation for video, multi-hypothesis aggregation plays a crucial role

in synthesizing accurate and consistent pose sequences. While advanced techniques have been explored, a

surprisingly common approach still involves straightforward averaging or taking the optimal solution of multiple

pose hypotheses. These approaches have been widely used in previous works, such as [32, 62]. The reason for its

popularity lies in its computational eiciency and ease of implementation. However, as the ield of sign language

pose generation evolves, so must the aggregation strategies.
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Table 1. Notations and Definitions in Our Model.

Symbol Description

X = {x1,x2, · · · ,xN } Input textual sentence of the gloss encoder with N glosses

Y = {y1,y2, · · · ,yU } Target sign pose sequence withU frames (i.e., ground truth)

G̃ = {д̃1, д̃2, · · · , д̃N } Gloss embeddings with positional encoding

X̃ = {x̃1, x̃2, · · · , x̃N } Gloss encodings output from the gloss encoder (i.e., gloss condition)

Ŷ = {ŷ1, ŷ2, · · · , ŷU } Difused poses with noise / Noises sampled from Gaussian distribution

H̃ = {h̃1, h̃2, · · · , h̃U } Noisy pose stream embedded with gloss condition in pose denoiser

Ỹ = {ỹ1, ỹ2, · · · , ỹU } Generated sign pose sequence withU frames

More recent works have attempted to address these limitations by exploring more sophisticated aggregation

techniques. Li et al. [35] design a cross-hypothesis interaction module to enable interactions among multi-

hypothesis features, thereby aggregating the multi-hypothesis features to synthesize the inal 3D pose. Saunders

et al. [46] propose a mixture of motion primitives architecture for sign language animation, in which a set

of distinct motion primitives are learned to be temporally combined at inference to animate continuous sign

language sequences.

Our method, while utilizing the averaging approach for simplicity, recognizes the need for further reinement.

We aim to enhance the accuracy and naturalness of the generated poses by incorporating additional considerations,

such as joint-level diferences and the exploitation of 2D keypoint information. Future work in this area could

focus on developing more advanced aggregation strategies that combine the beneits of simplicity with the

accuracy aforded by more complex techniques.

3 METHOD

Given a sign sentence X = {x1,x2, · · · ,xN } with N glosses, our SLP system aims to generate the semantically

corresponding sign pose sequence Ỹ = {ỹ1, ỹ2, · · · , ỹU } withU frames. Furthermore, we take ground-truth poses

Y = {y1,y2, · · · ,yU } as itting targets in SLP. To clarify the data stream in the GCDM framework, we elaborate

on these notations in Table 1.

3.1 Overall Pipeline

The overall pipeline of the proposed Gloss-driven Conditional Difusion Model (GCDM) is illustrated in Figure 2,

whose execution mainly includes two phases: a training phase (forward difusion and reverse difusion based on

target labels, see Section 3.2) and an inference phase (reverse difusion from pure noise samples, see Section 3.3).

Speciically, the proposed GCDM is based on a difusion model architecture, in which the sign gloss sequence is

encoded by a Transformer-based encoder and input into the difusion model as a semantic prior condition. In the

process of sign pose generation, the textual semantic priors carried in the encoded gloss features are integrated

into the embedded Gaussian noise via cross-attention. Subsequently, the model converts the fused features into

sign language pose sequences through T -round denoising steps.

During the training phase, the model uses the ground-truth labels of sign poses as the starting point, generates

Gaussian noise through T rounds of noise, and then performs T rounds of denoising to approximate the real

sign language poses. The entire process is constrained by the MAE loss function to ensure that the generated

sign language gestures are as close as possible to the target labels. In the inference phase, the model directly

randomly samples a set of Gaussian noise, generates multiple sign language gesture sequence hypotheses under

ACM Trans. Multimedia Comput. Commun. Appl.
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Fig. 2. Overview of the proposed GCDM. It consists of a gloss encoder and a pose denoiser. Thereinto, the Transformer-based
gloss encoder is used to learn the semantics of the gloss sequenceX = {x1:N }. Then, the encoded gloss embedding is regarded
as a semantic condition to guide the denoising process in difusion learning. Ater T timesteps, based on the Gaussian noise

samples Ỹ = {ỹ1:U }, the pose denoiser outputs the sign pose sequence Y = {y1:U }. For optimization, the MAE loss LMAE

is adopted to calculate the absolute error between the output sign poses and the target poses to evaluate the generation
performance.

the guidance of the gloss sequence, and outputs a high-conidence sign language pose video by averaging multiple

hypotheses.

3.2 Gloss-driven Conditional Difusion

3.2.1 Gloss Condition Encoding. In this module, we build a transformer-based encoder, which encodes input

glosses into gloss embedding tokens. To make glosses with similar semantics closer, we map the source tokens

X = {xn}Nn=1 into a high-dimensional space using a linear embedding layer:

дn =W
x · xn + bx ,дn ∈ R1×dx (1)

where дn is the vector representation of the gloss tokens,W x and bx represent the weight and bias during gloss

embedding, respectively.

Similar to grammatical spoken languages, sign language has its own unique linguistic rules. Considering that

the self-attention mechanism cannot directly encode the temporal information, we apply a positional encoding

layer to provide the temporal order of gloss vectors:

д̃n = дn + PE(n), (2)

where PE is implemented by the predeined sine and cosine functions of diferent frequencies.

Our gloss encoder consists of K identical blocks, each of which includes a Multi-Head Attention (MHA), a

Normalization Layer (NL), and a Feedforward Layer (FL). For ease of understanding, we use zk to mark the

ACM Trans. Multimedia Comput. Commun. Appl.
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learned feature sequence after the k-th block. The calculation process of the gloss encoder can be expressed as:

X̃ = GlossEncoder (G̃) ⇔



z0 = G̃ = {д̃1, д̃2, · · · , д̃n};
zk = FL(MHA(Q,K ,V )|Q=K=V=NL(zk ) + zk−1),k ∈ [1,K];
X̃ = NL(zK ).

(3)

Here, MHA plays a key role in aggregating gloabl token representations and computing gloss sequence

contextual dependencies. Speciically, MHA computes scaled dot-product attention based on a general Multi-Head

Attention (MHA) mechanism, which learns the relationship between queries and values from a series of matrices

(querys matrix Q , values matrix V , keys matrix K ).

Attention(Q,K ,V ) = so f tmax(QK
⊤

√
d

)V , (4)

where 1√
d
is the scaling factor, and dq = dk . In MHA, Q , K and V are all equal to zk , so the output is a contextual

sequence with self-attention.

MHA handles the above attention mechanism in parallel usingM diferent mappings, which allows the model

to capture complementary information from diferent representation sub-spaces. Then, the outputs of each head

are concatenated and projected together through a linear layer.
{
headm = Attention(QW Q

m ,KW
K
m ,VW

V
m );

MHA(Q,K ,V ) = [head1, · · · ,headM ] ·W O
,

(5)

where QW
Q
m , KW K

m , VW V
m andW O are the parameter matrices of weights related to inputs.

3.2.2 Label Forward Difusion. We irst sample a timestep t ∼ U (0,T ), where T is the maximum number of

timesteps. The forward difusion process is to gradually add Gaussian noise to the label data Y0 through an

approximate posterior q(Y1:T |Y0) modeled by a Markov chain, converting it into a Gaussian distribution N(0, I).
Here, we predeine the true label Y as the initial noise-free data YT . At the t-th time step, the Markov process can

be expressed as:

q(Yt |Yt−1) = N(Yt ;
√
1 − βtYt−1, βt I), (6)

where βt is the cosine noise variance schedule. The marginal distribution of Yt is given by:

q(Yt |Y0) := N
(
Yt ;

√
ᾱtY0, (1 − ᾱt )I

)
,

Yt =
√
ᾱtY0 +

√
1 − ᾱtϵ, ϵ ∼ N(0, I),

(7)

where αt := 1 − βt and ᾱt :=
∏t

s=1 αs . When the value of timestep is large enough, the distribution of q(YT ) is
close to an isotropic Gaussian distribution. During the reverse difusion process, YT is regarded as the initial

noise sample in the pose denoiser, also noted as Ŷ .

3.2.3 Semantic-driven Training. In this work, we adopt a Transformer-based pose denoiser driven by the gloss

condition, which inputs the noisy poses Ŷ and outputs the generated pose sequence Ỹ = {ỹ1, ỹ2, · · · , ỹU }. Here,
we denote the original input of the denoiser as noisy data. Factly, the pose denoiser aims to implement a reverse

difusion process on noisy poses to convert them into pure sign poses without noise. A linear layer is irst adopted

to map the noisy data ỹu ∈ R1×d ′
into a high-dimensional space:

hu =W
y · ŷu + by , ŷu ∈ R1×dy , (8)

ACM Trans. Multimedia Comput. Commun. Appl.
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where hu is the vector representation of the noisy data,W y and by represent the weight and bias during pose

embedding, respectively. Similar to the PE function (see Equation 2), a count encoding layer CE is used to

represent the position of each frame in the entire target sequence:

h̃u = hu +CE(u). (9)

Diferent from the gloss encoder, we introduce MHA with an interactive attention mechanism in the pose

denoiser to realize the guidance of the gloss semantic condition X̃ = {x̃n}Nn=1 for the pose streams H̃ = {h̃u }Uu=1.
The calculation process of the pose denoiser can be expressed as:

Ỹ = PoseDenoiser (X̃ , H̃ ) ⇔



z1 = FL(MHA(Q,K ,V )|Q=NL(H̃ ),K=V=X̃ );
zk = FL(MHA(Q,K ,V )|Q=K=V=NL(zk ) + zk−1),k ∈ [2,K];
Ỹ = FL′(NL(zK )).

(10)

whereMHA, NL and FL are the same as ones in the Equation 3. The adopted inal linear layer FL′ aims to map

the denoised stream into the sign poses with 3D coordinates.

The whole encoder-denoiser difusion model is trained using the Mean Absolute Error (MAE) loss between the

produced poses Ỹ = {ỹu }Uu=1 and the ground truth Y = {yu }Uu=1:

LMAE =
1

U

u=1∑

U

|ỹu − yu | (11)

3.3 Multi-Hypothesis Aggregation Based Inference

Previous SLP methods [21, 43, 53] pay more attention to generating single hypotheses of sign poses, focusing

little on aggregating multiple hypotheses to generate a single, high-conidence sign pose video. To explore the

scalability of our GCDM framework in multi-hypothesis prediction, we introduce a multi-hypothesis aggregation

mechanism in the reverse difusion process. Speciically, we sample P sets of noise from a Gaussian distribution

during the inference phase and feed them all into the pose denoiser. Driven by the gloss condition, multiple noisy

pose streams are independently learned to obtain P hypotheses of the sign pose sequence. Finally, the GCDM

outputs a single video of the sign poses by averaging multiple hypotheses. Combined with the Equations 10, this

process can be expressed as:

Ỹ = ReverseDi f f (X̃ , H̃1:P ) ⇔
{
Ỹp = PoseDenoiser (X̃ , H̃p ),p ∈ [1, P];
Ỹ = Mean(Ỹ1:P ).

(12)

It is noted that our method while utilizing the averaging approach for simplicity, recognizes the need for

further reinement. Future work in this area could focus on developing more advanced aggregation strategies

that combine the beneits of simplicity with the accuracy aforded by more complex techniques.

4 EXPERIMENTS

4.1 Experimental setup

4.1.1 Dataset. Following existing works [21, 43], we evaluate the proposed method on the dataset RWTH-

PHOENIX-Weather2014T (PHOENIX14T) [3], a publicly available German sign language corpus, which provides

8257 parallel samples containing spoken sentences, sign glosses and sign videos. Speciically, the corpus covers

2887 diferent German words and 1066 diferent glosses, which is a challenging dataset due to the low video

quality.

ACM Trans. Multimedia Comput. Commun. Appl.
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Table 2. uantitative results on PHOENIX14T dataset. ‘2’ indicates the reconstructed results.

Methods
DEV TEST

B-1 B-2 B-3 B-4 ROUGE WER↓ DTW-P↓ B-1 B-2 B-3 B-4 ROUGE WER↓ DTW-P↓
Ground Truth 29.77 20.21 15.16 12.13 29.60 74.17 0.00 29.76 20.12 14.93 11.93 28.98 71.94 0.00

PT-base† [43] 9.53 3.45 1.62 0.72 8.61 98.53 29.33 9.47 3.37 1.47 0.59 8.88 98.36 28.48

PT-FP&GN† [43] 12.51 6.50 4.76 3.88 11.87 96.85 11.75 13.35 7.29 5.33 4.31 13.17 96.50 11.54

NAT-AT [21] ś ś ś ś ś ś ś 14.26 9.93 7.11 5.53 18.72 88.15 ś

NAT-EA [21] ś ś ś ś ś ś ś 15.12 10.45 7.99 6.66 19.43 82.01 ś

DET [58] 17.25 10.17 7.04 5.32 17.85 ś ś 17.18 10.39 7.39 5.76 17.64 ś ś

GEN [53] 18.86 11.10 7.68 5.77 19.43 90.34 11.94 18.71 11.53 8.09 6.20 19.79 90.37 11.89

SignVQNet [23] ś ś ś 6.77 ś ś ś ś ś ś 6.88 ś ś ś

GCDM (Ours) 22.88 14.28 10.01 7.64 23.35 82.81 11.18 22.03 14.21 10.16 7.91 23.20 81.94 11.10

4.1.2 Evaluation metrics. Following the widely used evaluation scheme in SLP [21, 22, 43, 46, 58], we use the

classical SLT framework (i.e., NSLT [3]) as a back-translation evaluation model, whose inputs are modiied as the

sign language pose sequences. To the best of our knowledge, there is currently no publicly available pre-trained

back-translation evaluation model, so we retrained NSLT on PHOENIX14T referring to [21, 22]. We translate

the generated poses back into sign gloss sequences and spoken sentences, and then calculate BLEU, ROUGE and

Word Error Rate (WER) to measure the quality of produced sign poses. We provide BLEU n-grams from 1 to 4 for

completeness.

Additionally, we provide the results of DTW-P for evaluating the quality of the generated sequences, which

measures the sequential similarity between predicted pose sequence and ground truth based on Dynamic Time

Warping (DTW).

4.1.3 Implementation details. We use OpenPose [4] to extract 2D joint coordinates from the original videos, and

apply a skeleton model improvement estimation algorithm to convert the 2D coordinates into 3D sign poses,

referring to [67]. In this work, we regard the transformed 3D pose sequences as ground-truth poses. All the

transformer-based models in our GCDM are built with 2 layers, 4 heads and an embedding size of 512 (i.e., K = 2,

M = 4, dx = dy = dq = dk = 512). During the training of the GCDM, we apply Gaussian noise with a noise rate

of 5, and set λ to 1.0 for simplicity. The parameter of the model is optimized with ADAM [27] optimizer and the

learning rate is set to 1 × 10−3. Experiments are performed with PyTorch on NVIDIA GeForce RTX 2080 Ti GPU.

4.2 Comparison with State-of-the-Arts

We compare our GCDM with state-of-the-art methods as follows:

• PT-base [43] proposes a pure transformer-based approach for SLP, which contains a symbolic transformer

and a progressive transformer to translate spoken language into sign glosses and generate sign poses from

glosses.

• PT-FP&GN [43] is an extension of PT(base) that introduces a future prediction mechanism (i.e., predicting

the next several frames from the current time step) and Gaussian noise for data augmentation.

• NAT-AT [21] irst predicts the duration of the poses, and then utilizes a non-autoregressive model with a

spatial-temporal graph convolutional pose generator to produce a sequence of sign language poses.

• NAT-EA [21] proposes a purely non-autoregressive model to directly predict sign poses, and explores the

monotonic alignment between gloss feature sequences and pose sequences through an external aligner.
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Table 3. Ablation studies of timesteps on PHOENIX14T dataset (Proposals P = 1).

Timesteps
DEV TEST

BLEU-1↑ BLEU-2↑ BLEU-3↑ BLEU-4↑ ROUGE↑ WER↓ BLEU-1↑ BLEU-2↑ BLEU-3↑ BLEU-4↑ ROUGE↑ WER↓

T = 10 19.57 11.76 7.92 5.74 20.42 84.28 19.61 11.80 7.85 5.58 20.91 84.32

T = 100 20.80 12.91 9.05 6.89 22.23 83.56 20.05 12.62 8.86 6.81 21.46 82.55

T = 1000 22.63 14.19 10.11 7.71 23.66 82.84 21.44 13.90 10.00 7.71 22.78 81.69

• DET [58] designs a dual encoder transformer for SLP, which captures information from text and gloss to

generate sign poses with facial landmarks and facial action units.

• GEN [53] aims to introduce the special token into gloss encoding to perform aggregate learning on the

whole semantics of the gloss sequence, thereby enhancing the guidance ability of gloss semantics in the

process of sign language generation.

• SignVQNet [23] presents the sign language vector quantization network, which leverages vector quantiza-

tion to derive discrete representations from sign poses and integrates latent-level alignment for enhanced

linguistic coherence in sign language production.

As shown in Table 2, SET-OBT performs prominent superior to all the other methods. These results reveal

four points: (1) The GCDM method outperforms all other methods across all BLEU metrics on both the DEV

and TEST sets. It achieves the highest scores with BLEU-1 at 22.88 on DEV and 22.03 on TEST, indicating its

superior performance in matching the most frequent words. The GCDM also leads in ROUGE scores, with 23.35

on DEV and 23.20 on TEST, suggesting that it captures a greater extent of the reference sequences than the other

models. For WER, GCDM shows the lowest (which indicates better performance) rates of 82.81 on DEV and 81.94

on TEST, surpassing the other methods. This points to GCDM’s ability to accurately generate sign language

poses that translate well back to spoken sentences. (2) The DTW-P metric, which measures the alignment of

the generated pose sequence with the ground truth, is lowest for GCDM at 11.18 on DEV and 11.10 on TEST,

demonstrating its precision in pose generation. (3) Among the other methods, GEN shows competitive results,

especially in DEV, and PT-FP&GN performs notably well in the DTW-P metric on the DEV set, although it

does not reach the performance level of GCDM. (4) Ground Truth scores provide a reference for the maximum

achievable performance, showing that while GCDM is the leading method, there is still a gap between generated

results and the Ground Truth.

In conclusion, the proposed GCDM establishes a new state-of-the-art performance on the PHOENIX14T dataset.

These results demonstrate the efectiveness of GCDM in capturing the nuances of sign language, indicating its

potential for practical applications in sign language translation and synthesis.

4.3 Ablation Study

4.3.1 Impact of Timesteps in Difusion Model. Table 3 presents the results of ablation studies on the PHOENIX14T

dataset. The studies investigate the impact of varying timesteps on the quality of the generated sign language

videos. Observations from the table indicate that an increase in timesteps leads to improvements across all metrics

in both the DEV and TEST sets. This suggests that more noise cycles enhance the model’s ability to reine and

generate higher-quality sign language pose videos.

The most signiicant improvements are noticeable when the timestep count is raised from 10 to 100. For instance,

on the DEV set, BLEU-1 increases from 19.57 to 20.80, and WER decreases from 84.28 to 83.56, indicating higher

precision and fewer errors, respectively. Diminishing returns are observed when further increasing timesteps

from 100 to 1000. While there are still improvements, such as BLEU-1 rising from 20.80 to 22.63 in the DEV set

ACM Trans. Multimedia Comput. Commun. Appl.
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Table 4. Ablation studies of proposals on PHOENIX14T dataset (Timesteps T = 100).

Proposals
DEV TEST

BLEU-1↑ BLEU-2↑ BLEU-3↑ BLEU-4↑ ROUGE↑ WER↓ BLEU-1↑ BLEU-2↑ BLEU-3↑ BLEU-4↑ ROUGE↑ WER↓

P = 1 20.80 12.91 9.05 6.89 22.23 83.56 20.05 12.62 8.86 6.81 21.46 82.55

P = 2 21.84 13.62 9.54 7.24 22.75 82.87 20.54 13.15 9.33 7.18 21.90 82.63

P = 4 21.48 13.67 9.93 7.73 22.73 84.04 21.04 13.51 9.59 7.39 22.16 82.93

P = 6 22.07 13.74 9.76 7.47 22.73 82.44 20.96 13.56 9.79 7.60 22.52 81.83

P = 8 22.88 14.28 10.01 7.64 23.35 82.81 22.03 14.21 10.16 7.91 23.20 81.94

and WER slightly dropping from 83.56 to 82.84, the increments are less pronounced compared to the previous

increase. Comparing DEV and TEST sets, the patterns of improvement are consistent across both, although the

TEST set generally exhibits slightly lower performance scores, indicating a robust model that generalizes well

but with expected dips in an unseen environment.

The highest BLEU-1 score is achieved at T=1000 with 22.63 on the DEV set and 21.44 on the TEST set, suggesting

that the model’s ability to generate accurate irst-word matches is better with more timesteps. The WER, an

important metric for evaluating the coherent semantics of generating sign language videos, is lowest (indicating

better performance) at T=1000 for both sets, at 82.84 for DEV and 81.69 for TEST.

In conclusion, the difusion model’s performance in translating generated sign language pose videos into

glosses or text improves as the number of timesteps increases, with a notable leap from 10 to 100 timesteps

and more gradual improvements after that. The consistency across metrics and datasets reinforces the model’s

reliability and potential utility for sign language translation tasks.

4.3.2 Number of Proposals in Multi-hypothesis Aggregation. Table 4 provides the results of an ablation study that

assesses the performance impact of varying the number of proposals in the multi-hypothesis aggregation. Here,

"proposals" refer to the number of hypotheses before aggregation, and the study employs a direct averaging

method for multi-hypothesis aggregation. To focus on the efect of the number of proposals, the difusion model’s

timesteps are consistently set to 100. From the results, we can deduce the following:

On the DEV set, there is a noticeable incremental improvement in BLEU-1 scores as the number of proposals

increases, starting from 20.80 with P = 1 and peaking at 22.88 with P = 8. This indicates that the precision of

matching the most frequent words improves with more proposals. The WER shows a decreasing trend (which

indicates better performance) as the number of proposals increases. On the DEV set, the WER starts at 83.56 with

P = 1 and decreases to 82.81 with P = 8, while on the TEST set, it goes from 82.55 to 81.94.

On the TEST set, similar to the DEV set, the performance metrics show improvements with an increasing

number of proposals. For example, the BLEU-1 score rises from 20.05 with P = 1 to 22.03 with P = 8, and the WER

drops from 82.55 to 81.94. The consistency of improvement in both DEV and TEST sets indicates that the beneits

of using more proposals are robust and generalizable to unseen data.

It is worth noting that while the improvements are consistent, the rate of improvement appears to diminish as

the number of proposals increases. This can be seen where the diference in BLEU-1 between P = 1 and P = 2 is

more signiicant than between P = 6 and P = 8.

In conclusion, the results show that using a larger number of proposals in the multi-hypothesis aggregation

approach enhances the performance of the difusion model across all evaluated metrics. It suggests that integrating

multiple hypotheses before averaging leads to a more accurate representation of sign language poses, which

translates to better reverse translation quality from video to text or glosses. However, the diminishing returns
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HEUTE NACHT SIEBEN MAXIMAL VIERZEHN TAG SUED ZWEI ZWANZIG GRAD REGION ZWEI ZWANZIG GRAD

(heute nacht sieben bis vierzehn grad am tag zweiundzwanzig grad im süden und vierzehn grad in oberfranken)

Ground

Truth

Original

Frames

GCDM

Input

Glosses

HEUTE NACHT SUED ANFANG BISSCHEN GEWITTER IX SONST REGION REGEN IX KOENNEN AUCH NEBEL

(heute nacht sind im süden anfangs noch einzelne gewitter möglich sonst fällt nur hier und da regen stellenweise bildet sich nebel)

(a)

(b)

Fig. 3. Visual results of our GCDM on the benchmark. Challenging scenarios including fast motion and limbs not appearing
on the frame are involved.

observed with higher proposal counts hint at a trade-of between computational resources and performance

gains, a factor to consider in practical applications.

4.4 ualitative Results

4.4.1 Visualization in Diferent Challenging Scenarios. Figure 3 ofers a comprehensive visualization of the GCDM

performance on the benchmark under diferent challenging scenarios, including rapid movements and instances

where arms are not fully visible within the frame. In Figure 3 (a), the GCDM’s ability to accurately capture and

reproduce the gloss semantics in the generated poses is showcased. Despite instances where the ground truth

data does not adequately capture inger details, potentially due to motion-blurring efects, the GCDM exhibits a

remarkable capability to predict clear and distinct outcomes. This proiciency in maintaining deinition under

rapid motion conditions is a testament to the model’s robustness. Figure 3 (b) further elucidates the GCDM’s

strength in generating lifelike poses by leveraging temporal dependencies, particularly when the subject’s arm is

not visible within the original frame. This demonstrates the model’s advanced inferencing capabilities, where it

efectively utilizes contextual information from previous and subsequent frames to reconstruct poses that are

absent from the immediate frame under consideration.
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Ground
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Original
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(am freundlichsten ist es noch im nordosten sowie in teilen bayerns) (a)

Ground

Truth

Original

Frames

GEN-OBT

GCDM

Input

Glosses

SUEDOST LOCKER NACHT KOENNEN GEWITTER

(im osten und südosten sind zu beginn der nacht einzelne gewittrige schauer möglich) (b)

Fig. 4. Visualization of comparison between our GCDM and the existing method (i.e., GEN-OBT [53]) on the benchmark.

4.4.2 Visualization Compared to Other Methods. We further provide two visual comparisons of the proposed

GCDM against the existing GEN-OBT [53] in the SLP task. Ground truth annotations and the original video

frames are attached to ofer a benchmark for evaluation. In Figure 4 (a), the eicacy of GCDM in predicting

hand positioning is accentuated. It exhibits a more precise reconstruction of the spatial relations between

two hands, which is pivotal in sign language interpretation as it can signiicantly afect semantic conveyance.

The red boxes underscore instances where GCDM markedly outperforms GEN-OBT, adhering more closely to

the ground truth and thereby preserving the integrity of the sign representation. Figure 4 (b) scrutinizes the

idelity of inger detail rendering by both methods. The GCDM approach demonstrates superior deinition in the

articulation of inger postures, an aspect critical to the granularity of sign language. The red circles highlight the

GCDM’s enhanced clarity in inger positioning, whereas the GEN-OBTmethod’s renderings appear comparatively

indistinct, potentially leading to semantic discrepancies.

5 CONCLUSIONS

In this work, we propose a novel Gloss-driven Conditional Difusion Model (GCDM) for Sign Language Production

(SLP). The proposed GCDM is based on a difusion model architecture, in which the sign gloss sequence is encoded

by a Transformer-based encoder and integrated into the Gaussian noise in the pose denoiser as a semantic prior

condition. Subsequently, the model converts the Gaussian noise with the gloss condition into sign language pose

sequences through T-round denoising steps. Besides, a multi-hypothesis aggregation mechanism is introduced
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in the inference phase, which generates multiple sign language pose sequence hypotheses and outputs a high-

conidence sign video by averaging multiple hypotheses. Extensive experiments validate the efectiveness and

robustness of the proposed method.

ACKNOWLEDGMENTS

This research is supported in part by grants from the National Natural Science Foundation of China (Grants No.

62272144, U20A20183, 61932009, 62302142, 62020106007), the Fundamental Research Funds for the Central Uni-

versities (Grants No. JZ2023HGQA0097), and China Postdoctoral Science Foundation (Grants No. 2022M720981).

REFERENCES
[1] Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, and Cordelia Schmid. 2021. ViViT: A Video Vision Transformer.

In IEEE International Conference on Computer Vision. 6836ś6846.

[2] Qian Bao, Wu Liu, Jun Hong, Lingyu Duan, and Tao Mei. 2020. Pose-native Network Architecture Search for Multi-person Human Pose

Estimation. In ACM International Conference on Multimedia. 592ś600.

[3] Necati Cihan Camgoz, Simon Hadield, Oscar Koller, Hermann Ney, and Richard Bowden. 2018. Neural Sign Language Translation. In

IEEE Conference on Computer Vision and Pattern Recognition. 7784ś7793.

[4] Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh. 2017. Realtime multi-person 2d pose estimation using part ainity ields. In

IEEE Conference on Computer Vision and Pattern Recognition. 7291ś7299.

[5] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey Zagoruyko. 2020. End-to-end Object

Detection with Transformers. In European Conference on Computer Vision. Springer, 213ś229.

[6] Nanxin Chen, Yu Zhang, Heiga Zen, Ron J Weiss, Mohammad Norouzi, and William Chan. 2021. WaveGrad: Estimating Gradients for

Waveform Generation. In International Conference on Learning Representations.

[7] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul Barham, Hyung Won Chung,

Charles Sutton, Sebastian Gehrmann, et al. 2023. Palm: Scaling language modeling with pathways. Journal of Machine Learning Research

24, 240 (2023), 1ś113.

[8] Runpeng Cui, Zhong Cao, Weishen Pan, Changshui Zhang, and Jianqiang Wang. 2019. Deep Gesture Video Generation with Learning

on Regions of Interest. IEEE Transactions on Multimedia 22, 10 (2019), 2551ś2563.

[9] Mathieu De Coster, Mieke Van Herreweghe, and Joni Dambre. 2021. Isolated Sign Recognition from RGB Video Using Pose Flow and

Self-attention. In IEEE Conference on Computer Vision and Pattern Recognition. 3441ś3450.

[10] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani,

Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. 2020. An Image is Worth 16x16 Words: Transformers for Image Recognition at

Scale. In International Conference on Learning Representations.

[11] JRW Glauert, Ralph Elliott, SJ Cox, Judy Tryggvason, and Mary Sheard. 2006. VANESSA ś A System for Communication Between Deaf

and Hearing People. Technology and Disability 18, 4 (2006), 207ś216.

[12] Dan Guo, Kun Li, Bin Hu, Yan Zhang, and Meng Wang. 2024. Benchmarking Micro-action Recognition: Dataset, Methods, and

Applications. IEEE Transactions on Circuits and Systems for Video Technology (2024). https://doi.org/10.1109/TCSVT.2024.3358415

[13] Dan Guo, Shengeng Tang, Richang Hong, and Meng Wang. 2021. Review of Sign Language Recognition, Translation and Generation.

Computer Science 48, 3 (2021), 60ś70.

[14] Dan Guo, Shengeng Tang, Richang Hong, and MengWang. 2021. Sign Language Recognition. Multimedia for Accessible Human Computer

Interfaces (2021), 23ś59.

[15] Dan Guo, Shengeng Tang, and Meng Wang. 2019. Connectionist temporal modeling of video and language: a joint model for translation

and sign labeling. In International Joint Conference on Artiicial Intelligence. 751ś757.

[16] Dan Guo, ShuoWang, Qi Tian, andMengWang. 2019. Dense temporal convolution network for sign language translation. In International

Joint Conference on Artiicial Intelligence. 744ś750.

[17] Dan Guo, Wengang Zhou, Anyang Li, Houqiang Li, and Meng Wang. 2019. Hierarchical recurrent deep fusion using adaptive clip

summarization for sign language translation. IEEE Transactions on Image Processing 29 (2019), 1575ś1590.

[18] Dan Guo, Wengang Zhou, Houqiang Li, and Meng Wang. 2017. Online Early-late Fusion Based on Adaptive HMM for Sign Language

Recognition. ACM Transactions on Multimedia Computing, Communications, and Applications 14, 1 (2017), 1ś18.

[19] Dan Guo, Wengang Zhou, Houqiang Li, and Meng Wang. 2018. Hierarchical LSTM for sign language translation. In AAAI Conference on

Artiicial Intelligence, Vol. 32.

[20] Dai Hasegawa, Naoshi Kaneko, Shinichi Shirakawa, Hiroshi Sakuta, and Kazuhiko Sumi. 2018. Evaluation of speech-to-gesture generation

using bi-directional LSTM network. In International Conference on Intelligent Virtual Agents. 79ś86.

ACM Trans. Multimedia Comput. Commun. Appl.

https://doi.org/10.1109/TCSVT.2024.3358415


Gloss-driven Conditional Difusion Models for Sign Language Production • 15

[21] Wencan Huang, Wenwen Pan, Zhou Zhao, and Qi Tian. 2021. Towards Fast and High-Quality Sign Language Production. In ACM

International Conference on Multimedia. 3172ś3181.

[22] Euijun Hwang, Jung-Ho Kim, and Jong-Cheol Park. 2021. Non-Autoregressive Sign Language Production with Gaussian Space. In British

Machine Vision Conference.

[23] Eui Jun Hwang, Huije Lee, and Jong C Park. 2023. Autoregressive Sign Language Production: A Gloss-Free Approach with Discrete

Representations. arXiv preprint arXiv:2309.12179 (2023).

[24] Kostas Karpouzis, George Caridakis, S-E Fotinea, and Eleni Efthimiou. 2007. Educational Resources and Implementation of a Greek Sign

Language Synthesis Architecture. Computers & Education 49, 1 (2007), 54ś74.

[25] Dilek Kayahan and Tunga Güngör. 2019. A Hybrid Translation System from Turkish Spoken Language to Turkish Sign Language. In

International Symposium on INnovations in Intelligent SysTems and Applications. 1ś6.

[26] Levon Khachatryan, AndranikMovsisyan, Vahram Tadevosyan, Roberto Henschel, ZhangyangWang, Shant Navasardyan, and Humphrey

Shi. 2023. Text2video-zero: Text-to-image difusion models are zero-shot video generators. In IEEE Conference on Computer Vision and

Pattern Recognition. 15954ś15964.

[27] Diederik P Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization. (2015).

[28] Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. 2021. DifWave: A Versatile Difusion Model for Audio Synthesis.

In International Conference on Learning Representations.

[29] Dimitris Kouremenos, Klimis S Ntalianis, Giorgos Siolas, and Andreas Stafylopatis. 2018. Statistical Machine Translation for Greek to

Greek Sign Language Using Parallel Corpora Produced via Rule-Based Machine Translation. In International Conference on Tools with

Artiicial Intelligence. 28ś42.

[30] Sven Kreiss, Lorenzo Bertoni, and Alexandre Alahi. 2019. Pifpaf: Composite Fields for Human Pose Estimation. In IEEE Conference on

Computer Vision and Pattern Recognition. 11977ś11986.

[31] Shyam Krishna and Janmesh Ukey. 2021. GAN Based Indian Sign Language Synthesis. In Indian Conference on Vision, Graphics and

Image Processing. 1ś8.

[32] Chen Li and Gim Hee Lee. 2019. Generating multiple hypotheses for 3d human pose estimation with mixture density network. In IEEE

Conference on Computer Vision and Pattern Recognition. 9887ś9895.

[33] Kun Li, Dan Guo, and Meng Wang. 2021. Proposal-free video grounding with contextual pyramid network. In AAAI Conference on

Artiicial Intelligence, Vol. 35. 1902ś1910.

[34] Kun Li, Dan Guo, and Meng Wang. 2023. ViGT: proposal-free video grounding with a learnable token in the transformer. Science China

Information Sciences 66, 10 (2023), 202102.

[35] Wenhao Li, Hong Liu, Hao Tang, Pichao Wang, and Luc Van Gool. 2022. Mhformer: Multi-hypothesis transformer for 3d human pose

estimation. In IEEE Conference on Computer Vision and Pattern Recognition. 13147ś13156.

[36] Zhengxiong Luo, Dayou Chen, Yingya Zhang, Yan Huang, Liang Wang, Yujun Shen, Deli Zhao, Jingren Zhou, and Tieniu Tan. 2023.

VideoFusion: Decomposed Difusion Models for High-Quality Video Generation. In IEEE Conference on Computer Vision and Pattern

Recognition. 10209ś10218.

[37] Taro Miyazaki, Yusuke Morita, andMasanori Sano. 2020. Machine Translation from Spoken Language to Sign Language Using Pre-trained

Language Model As Encoder. InWorkshop on the Representation and Processing of Sign Languages. 139ś144.

[38] B Natarajan and R Elakkiya. 2022. Dynamic GAN for High-Quality Sign Language Video Generation from Skeletal Poses Using

Generative Adversarial Networks. Soft Computing (2022).

[39] Gabriele Prato, Ella Charlaix, and Mehdi Rezagholizadeh. 2020. Fully Quantized Transformer for Machine Translation. In Conference on

Empirical Methods in Natural Language Processing. 1ś14.

[40] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela

Mishkin, Jack Clark, et al. 2021. Learning Transferable Visual Models from Natural Language Supervision. In International Conference on

Machine Learning. PMLR, 8748ś8763.

[41] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. 2022. High-resolution image synthesis with

latent difusion models. In IEEE Conference on Computer Vision and Pattern Recognition. 10684ś10695.

[42] Ben Saunders, Necati Cihan Camgoz, and Richard Bowden. 2020. Adversarial Training for Multi-Channel Sign Language Production. In

British Machine Vision Conference.

[43] Ben Saunders, Necati Cihan Camgoz, and Richard Bowden. 2020. Progressive Transformers for End-to-end Sign Language Production.

In European Conference on Computer Vision. 687ś705.

[44] Ben Saunders, Necati Cihan Camgoz, and Richard Bowden. 2021. AnonySign: Novel Human Appearance Synthesis for Sign Language

Video Anonymisation. In IEEE International Conference on Automatic Face and Gesture Recognition. 1ś8.

[45] Ben Saunders, Necati Cihan Camgoz, and Richard Bowden. 2021. Continuous 3dMulti-channel Sign Language Production Via Progressive

Transformers and Mixture Density Networks. International Journal of Computer Vision 129, 7 (2021), 2113ś2135.

[46] Ben Saunders, Necati Cihan Camgoz, and Richard Bowden. 2021. Mixed SIGNals: Sign Language Production via a Mixture of Motion

Primitives. In IEEE International Conference on Computer Vision. 1919ś1929.

ACM Trans. Multimedia Comput. Commun. Appl.



16 • Shengeng Tang, et al., Shengeng Tang, Feng Xue, Jingjing Wu, Shuo Wang, and Richang Hong

[47] Peipei Song, Dan Guo, Xun Yang, Shengeng Tang, and Meng Wang. 2024. Emotional Video Captioning With Vision-Based Emotion

Interpretation Network. IEEE Transactions on Image Processing 33 (2024), 1122ś1135.

[48] Peipei Song, Dan Guo, Xun Yang, Shengeng Tang, Erkun Yang, and Meng Wang. 2023. Emotion-Prior Awareness Network for Emotional

Video Captioning. In ACM International Conference on Multimedia. 589ś600.

[49] Stephanie Stoll, Necati Cihan Camgoz, Simon Hadield, and Richard Bowden. 2020. Text2Sign: Towards Sign Language Production Using

Neural Machine Translation and Generative Adversarial Networks. International Journal of Computer Vision 128, 4 (2020), 891ś908.

[50] Stephanie Stoll, Simon Hadield, and Richard Bowden. 2020. SignSynth: Data-Driven Sign Language Video Generation. In European

Conference on Computer Vision. 353ś370.

[51] Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu, Furu Wei, and Jifeng Dai. 2019. VL-BERT: Pre-training of Generic Visual-Linguistic

Representations. In International Conference on Learning Representations.

[52] Shengeng Tang, Dan Guo, Richang Hong, and Meng Wang. 2022. Graph-based multimodal sequential embedding for sign language

translation. IEEE Transactions on Multimedia 24 (2022), 4433ś4445.

[53] Shengeng Tang, Richang Hong, Dan Guo, and Meng Wang. 2022. Gloss semantic-enhanced network with online back-translation for

sign language production. In ACM International Conference on Multimedia. 5630ś5638.

[54] Inigo Jauregi Unanue, Jacob Parnell, and Massimo Piccardi. 2021. BERTTune: Fine-Tuning Neural Machine Translation with BERTScore.

In Annual Meeting of the Association for Computational Linguistics. 915ś924.

[55] Neel Vasani, Pratik Autee, Samip Kalyani, and Ruhina Karani. 2020. Generation of Indian Sign Language by Sentence Processing and

Generative Adversarial Networks. In International Conference on Information Systems Security. 1250ś1255.

[56] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017.

Attention is All You Need. Advances in Neural Information Processing Systems 30 (2017).

[57] Lucas Ventura, Amanda Duarte, and Xavier Giró-i Nieto. 2020. Can Everybody Sign Now? Exploring Sign Language Video Generation

from 2d Poses. In Sign Language Recognition, Translation & Production.

[58] Carla Viegas, Mert Inan, Lorna Quandt, and Malihe Alikhani. 2023. Including Facial Expressions in Contextual Embeddings for Sign

Language Generation. In Joint Conference on Lexical and Computational Semantics. 1ś10.

[59] Fei Wang, Dan Guo, Kun Li, and Meng Wang. 2024. Eulermormer: Robust eulerian motion magniication via dynamic iltering within

transformer. In AAAI Conference on Artiicial Intelligence, Vol. 38. 5345ś5353.

[60] Fei Wang, Dan Guo, Kun Li, Zhun Zhong, and Meng Wang. 2024. Frequency Decoupling for Motion Magniication via Multi-Level

Isomorphic Architecture. arXiv preprint arXiv:2403.07347 (2024).

[61] Shuo Wang, Dan Guo, Wen-gang Zhou, Zheng-Jun Zha, and Meng Wang. 2018. Connectionist temporal fusion for sign language

translation. In ACM International Conference on Multimedia. 1483ś1491.

[62] Xinshuo Weng, Boris Ivanovic, and Marco Pavone. 2022. Mtp: Multi-hypothesis tracking and prediction for reduced error propagation.

In IEEE Intelligent Vehicles Symposium. IEEE, 1218ś1225.

[63] Qinkun Xiao, Minying Qin, and Yuting Yin. 2020. Skeleton-based Chinese Sign Language Recognition and Generation for Bidirectional

Communication Between Deaf and Hearing People. Neural Networks 125 (2020), 41ś55.

[64] Jiacheng Yang, Mingxuan Wang, Hao Zhou, Chengqi Zhao, Weinan Zhang, Yong Yu, and Lei Li. 2020. Towards Making the Most of Bert

in Neural Machine Translation. In AAAI Conference on Artiicial Intelligence, Vol. 34. 9378ś9385.

[65] Ling Yang, Jingwei Liu, Shenda Hong, Zhilong Zhang, Zhilin Huang, Zheming Cai, Wentao Zhang, and Bin CUI. 2024. Improving

Difusion-Based Image Synthesis with Context Prediction. In Neural Information Processing Systems, Vol. 36. 37636ś37656.

[66] Aoxiong Yin, Zhou Zhao, Jinglin Liu, Weike Jin, Meng Zhang, Xingshan Zeng, and Xiaofei He. 2021. SimulSLT: End-to-End Simultaneous

Sign Language Translation. In ACM International Conference on Multimedia. 4118ś4127.

[67] Jan Zelinka and Jakub Kanis. 2020. Neural Sign Language Synthesis: Words Are Our Glosses. In International Workshop on Applications

of Computer Vision. 3395ś3403.

[68] Jan Zelinka, Jakub Kanis, and Petr Salajka. 2019. NN-based Czech Sign Language Synthesis. In International Conference on Speech and

Computer. 559ś568.

[69] Jiali Zeng, Shuangzhi Wu, Yongjing Yin, Yufan Jiang, and Mu Li. 2021. Recurrent Attention for Neural Machine Translation. In Conference

on Empirical Methods in Natural Language Processing. 3216ś3225.

[70] Ni Zeng, Yiqiang Chen, Yang Gu, Dongdong Liu, and Yunbing Xing. 2020. Highly Fluent Sign Language Synthesis Based on Variable

Motion Frame Interpolation. In IEEE International Conference on Systems, Man, and Cybernetics. 1772ś1777.

[71] Lvmin Zhang, Anyi Rao, andManeesh Agrawala. 2023. Adding conditional control to text-to-image difusion models. In IEEE International

Conference on Computer Vision. 3836ś3847.

[72] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher Dewan, Mona Diab, Xian Li,

Xi Victoria Lin, et al. 2022. Opt: Open pre-trained transformer language models. arXiv preprint arXiv:2205.01068 (2022).

[73] Tianfu Zhang, He-Yan Huang, Chong Feng, and Longbing Cao. 2021. Enlivening Redundant Heads in Multi-head Self-attention for

Machine Translation. In Conference on Empirical Methods in Natural Language Processing. 3238ś3248.

ACM Trans. Multimedia Comput. Commun. Appl.



Gloss-driven Conditional Difusion Models for Sign Language Production • 17

[74] Hao Zhou, Wengang Zhou, Yun Zhou, and Houqiang Li. 2021. Spatial-temporal Multi-cue Network for Sign Language Recognition and

Translation. IEEE Transactions on Multimedia (2021).

[75] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. 2020. Deformable DETR: Deformable Transformers for

End-to-End Object Detection. In International Conference on Learning Representations.

Received 23 February 2024; revised 3 April 2024; accepted 24 April 2024

ACM Trans. Multimedia Comput. Commun. Appl.


	Abstract
	1 Introduction
	2 Related Work
	2.1 Sign Language Production
	2.2 Diffusion Model
	2.3 Multi-Hypothesis Aggregation

	3 Method
	3.1 Overall Pipeline
	3.2 Gloss-driven Conditional Diffusion
	3.3 Multi-Hypothesis Aggregation Based Inference

	4 Experiments
	4.1 Experimental setup
	4.2 Comparison with State-of-the-Arts
	4.3 Ablation Study
	4.4 Qualitative Results

	5 Conclusions
	Acknowledgments
	References

