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RGB-D cross-modal person re-identification (re-id) targets at retrieving the person of interest across RGB and depth image
modalities. To cope with the modal discrepancy, some existing methods generate an auxiliary mode with either inherent
properties of input modes or extra deep networks. However, such useful intermediary role included in generated mode is often
overlooked in these approaches, leading to insufficient exploitation of crucial bridge knowledge. By contrast, in this paper, we
propose a novel approach that constructs an intermediary mode through the constraints of self-supervised intermediary
learning, which is freedom frommodal prior knowledge and additional module parameters. We then design a bridge network to
fully mine the intermediary role of generated modality through carrying out multi-modal integration and decomposition. For
one thing, this network leverages a multi-modal transformer to integrate the information of three modes via fully exploiting
their heterogeneous relations with the intermediary mode as the bridge. It conducts the identification consistency constraint to
promote cross-modal associations. For another, it employs circle contrastive learning to decompose the cross-modal constraint
process into several subprocedures, which provides the intermediate relay during pulling two original modalities closer.
Experiments on two public datasets demonstrate that the proposed method exceeds the state-of-the-arts. The effectiveness
of each component in this method is verified through numerous ablation studies. Additionally, we have demonstrated the
generalization ability of the proposed method through experiments.

CCS Concepts: • Computing methodologies; • Image representations; • Object identification;

Additional Key Words and Phrases: RGB-D cross-modal person re-identification, Auxiliary modal generation, Self-supervised
intermediary learning, Heterogeneous relation integration, Cross-modal contrastive learning decomposition.

1 INTRODUCTION
Person re-identification (re-id) has been a fundamental task in computer vision for decades, aiming to retrieve
the persons across non-overlapping cameras. Recently, with the flourishing of radar technology, the high-quality
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2 • Wu et al.

depth image can be obtained more conveniently, which has been introduced into pedestrian recognition tasks to
realize the person matching across RGB and depth image modalities, i.e., RGB-Depth (RGB-D) cross-modal person
re-identification [8, 9, 36, 43, 49]. As depth image avoids the impacts of light variances, RGB-D cross-modal
person re-identification can achieve all-weather recognition. Hence, this task can be deployed in a wider range of
scenarios, which draws increasing attention in the person re-id community.
However, there exists an enormous discrepancy between RGB and depth image modalities. RGB image

represents the color and texture of the person while depth mode depicts the distance information of the scene.
This brings tremendous challenges to RGB-D person re-id.
In accordance with the patterns of narrowing modal gap, prevailing cross-modal recognition methods can

be broadly categorized into two types: non-generation-based methods and generation-based methods. Non-
generation-based methods [8, 9, 36, 43, 49] aim to lessen the modal discrepancy by capturing the common
features between two modalities. Their framework is summarized in Fig. 1(a), which has been as a dominant
cross-modal recognition paradigm. Typically, these methods concentrate on promoting feature extractors and loss
functions to bolster feature representation capability. For instance, some approaches [39, 46] design part-based
feature extraction networks and introduce attention mechanisms to incorporate spatial contextual clues for
enriching feature expression. Additionally, some works [1, 36] strengthen the constraints of feature learning
between the two modalities to align them. Nevertheless, these works straightly handle such significant modal
discrepancy by mapping the representations of two modalities into the same space, whose tolerance for the
modal gaps is limited.
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Fig. 1. Difference demonstrations between the proposed method and existing cross-modal person identification approaches.
(a) Most non-generation-based methods aim to capture the common features from distinct modalities. (b) Prior generation-
based methods either exploit additional deep networks or prior information to produce transition modes, and directly perform
cross-modal matching on original and generated modalities. (c) The proposed method produces an intermediary mode of
input modalities with self-supervised intermediary learning instead of prior properties and additional network parameters,
which fully exploits the generated modal to bridge modal discrepancy by the bridge network during cross-modal matching.

To further narrow the modal gap, some generation-based methods [3, 14, 33, 34] have been investigated to
provide transition modality of RGB and depth modalities, which build a bridge for lessening their discrpancy.
Prior generation-based methods either leverage auxiliary networks or prior information to produce transition
modes. Their overviews are summarized in Fig. 1(b). For example, some attempts [3, 4, 33, 34] adopt generative
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adversarial networks (GANs) to produce cross-modal images for each modality, which are then matched with real
images of the same modality. Partmix [16] applys part detection network to blend the part-based features from
two modalities, which regularizes the models from overfitting to the training data via Mixup technology [42]. MID
[14] designs a deep reinforcement learning framework to determine the combination ratio of two modalities for
providing auxiliary modality. Work [40] fully utilizes the modal prior information, which generates a grayscale
modality by preserving the structural information of both modalities and discarding the color information that
only exists in one modality.

Despite significant progress achieved by existing generation-based cross-modal works, applying them on RGB-
D cross-modal identification may account for the following two drawbacks: On one hand, it is difficult to create
high-quality cross-modal images for RGB and depth modalities through deep networks, because generating three-
dimensional (3D) depth images from two-dimensional (2D) RGB images has always been an ill-posed problem
in the field of computer vision. Besides, the utilization of deep network attributes to expensive computational
cost. On the other hand, it is tough to select a realistic mode that contains the contents of both RGB and depth
modalities. Moreover, the exploitation of modal prior information hinders the modules from applying in other
scenarios.
To build a generation-based approach that is free from the fetter of generative model and prior knowledge,

this paper proposes a modal-mix operation inspired by Mixup [42] to generate an auxiliary mode with two input
modalities. The key idea of modal-mix is to introduce a virtual modal for each instance, whose intermediary effect
is deduced theoretically. Since it produces this intermediary modal with randomness instead of the inherent
properties of original modality for advancing network generalization, it may yield some inferior samples. To
alleviate ambiguous quality in modal generation, inspired by self-supervised learning [10, 37], the cross-modal
self-supervised intermediary learning is leveraged on the generated and two input modalities to restrict the
modal generation process with avoiding adding extra module. In contrast to previous Mixup-based method [16]
that relies on additional modules to fuse two modalities for preventing model overfitting, this paper adopts a
self-supervised intermediary learning approach to bridge the disparities between RGB and depth modalities. The
objectives and implementation processes of these approaches differ significantly.

Afterward, this paper adequately utilizes the bridge role of generated modes by presenting a bridge network,
which differs from previous generation-based methods [4, 14, 16, 33] that feed their features into cross-modal
matching directly. This network first exploits a multi-modal transformer to aggregate the information of triple
modalities after fully mining multi-modality clues. Specifically, it attends to the generated modal to propagate the
transition information while exploring the correlations between original modalities.The utilization of intermediate
modes accounts for a smoother modeling process of heterogeneous relationship. Then, we apply the identification
consistency learning on the integrated triple-mode features to strengthen multi-mode constraints, consequentially
enhancing the cross-modal associations.
To further produce the bridge effect of generated modality, this bridge network decomposes the process of

cross-modal constraints via circle contrast learning. It enforces the characteristics of two original modalities to be
similar to the features of the intermediary mode at the category-level during pulling two original modes closer.
In this way, the generated modal acts as an intermediate relay for two original modalities, which is capable to
provide intermediate effects, resulting in the link ability for modal gaps.

To summarize, we propose a generation-based RGB-D cross-modal person re-identification method, presented
in Fig. 1(c). It sufficiently exploits the generated intermediary modal to bridge the modal gaps between two input
modals, which is termed as intermediary-generated bridge network (IBN). The contributions of this paper are as
follows:
(1) This paper proposes a modal generation approach to construct the intermediary modality of two input

modalities. It designs cross-modal self-supervised intermediary learning to guarantee the quality of generated
samples, which is freedom from modal prior knowledge and additional module parameters.
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(2) This paper puts forward a bridge network to adequately mine the bridge role of generated intermediary
modal, which employs the multi-modal transformer and circle contrast learning to provide an intermediate relay
through generated modality during multi-modal integration and decomposition.

(3) Experiments on several public datasets demonstrate that the performance of the proposed method is superior
in RGB-D cross-modal person re-id tasks. In addition, extensive ablation studies illustrate the effectiveness of
each part in IBN.

2 RELATED WORKS
In this section, we mainly introduce the differences and relations between the proposed method and existing
methods in related fields.

2.1 RGB-IR Person Re-identification
The performance of most RGB-based methods [6, 22, 31] would deteriorate under scenes with significant illumi-
nation variations. Especially in inferior light environment, such as the night scene, it is infeasible to capture RGB
images with sufficiently high-quality for person re-id task. To address this issue, RGB-IR cross-modal re-id is
presented [7, 35] to match the person across RGB and infrared (IR) modalities.

Existing RGB-IRmethods aremainly divided into two categories: non-generation-basedmethods and generation-
based ones. Non-generation-based methods [39, 45, 46] focus on capturing the common features of two modals,
which attempt to narrow modal gap by enhancing feature representation. Some efforts [39, 46] have been made
to design part-based attention modules to obtain part-based relations for enriching feature expression. Besides,
work [21] proposes a memory-augmented unidirectional learning method to learn explicit cross-modality metrics
in two uni-directions and further enhances them with memory-based augmentation. Nevertheless, these works
straightly handle such significant modal discrepancy by mapping the representations of two modalities into the
same space, whose tolerance for the modal gaps is limited.

To further narrow the modal gap, some attempts have investigated auxiliary mode generation for this task. Prior
RGB-IR generation-based methods can be categorized into two finer types: generation-network-based approaches
and prior-information-based methods. The former approachs [3, 14, 16, 29, 33, 34, 47] employ deep networks to
provide generated modal. For example, some methods [3, 33, 34] adopt generative adversarial networks (GANs)
to produce cross-modal images for each modality. Subsequently, a feature alignment module is adopted to match
the real images with the generated images of the same modality. Work [16] utilizes part detection network to
fuze the part-based features of two modals with Mixup-based idea, which regularizes the models from overfitting
to the training data. It then adopts contrastive learning to pull positive sample pairs close and push negative
sample pairs far. MID [14] designs a deep reinforcement learning framework to decide the combination ratio of
two modalities for providing auxiliary mode. By contrast, the latter ones [17, 40, 48] leverage prior properties
of original modals to construct the transition modal. For instance, in the work [40], cross-modal identification
is achieved by generating a grayscale modality that preserves the structural information of RGB images and
discards the color information not presented in IR images.
Despite significant progress achieved by existing RGB-IR generation-based works, applying them on RGB-D

cross-modal identification may account for the following two drawbacks: On one hand, it is difficult to create
high-quality cross-modal images for RGB and depth modalities through deep networks, because generating
three-dimensional (3D) depth images from two-dimensional (2D) RGB images has always been an ill-posed
problem in the field of computer vision. Besides, the utilization of deep network attributes to their expensive
computational cost. On the other hand, it is tough to select a realistic mode that contains the contents of both
RGB and depth modalities. Moreover, the exploitation of modal prior information hinders the modules from
applying in other scenarios.
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Thus, this paper proposes a generation-based identification method tailored for RGB-D cross-modal person
re-id, which is freedom from modal prior knowledge and additional module parameters. It exploits a modal-mix
operation inspired by Mixup to construct the intermediary mode of two input modes, whose quality is guaranteed
by cross-modal self-supervised intermediary learning. Although minor cross-modal methods [14, 16] also utilize
Mixup-based approaches, the proposed generation-based method differs from them in the following aspects:
1) Unlike these methods [14, 16], which rely on auxiliary networks to produce transition modes, the proposed
generation approach operates independently of deep models and prior knowledge. 2) This paper adequately
utilizes the bridge role of generated modes by presenting a bridge network, which differs from previous methods
[14, 16] that feed their features into cross-modal matching directly. 3) Work [16] promotes the Mixup method
to realize a data augmentation method suitable for cross-modal pedestrian recognition, which aims to enhance
model generalization performance. By contrast, this paper leverages the Mixup technology to generate transition
modalities, which devotes to bridging the gap between two original modalities. 4) In contrast with [16], which
employs contrastive learning to enhance feature discrimination by pulling positive sample pairs close and pushing
negative sample pairs far, this paper utilizes contrastive learning to ensure the quality of generated modalities
and narrow the modal gap by enforcing a bridge constraint between them. Their purposes and applications are
fundamentally different. In summary, our method diverges from existing approaches in terms of mode generation
and usage, reflecting diverse goals and methodologies.

2.2 RGB-D Person Re-identification
Infrared images are easily affected by environmental temperature. For example, if the human body temperature
is similar to the ambient temperature, especially in summer, it is difficult to obtain high-quality infrared images.
By contrast, the depth image that reflects the depth information of the scene avoids the impacts of light and heat
variance. These images remain unchanged even if the pedestrians change their clothes. Nowadays, with the rapid
development of radar technology, it is more convenient to capture depth and skeleton information with depth
camera, such as Microsoft Kinect. Therefore, depth image has been widely exploited in many computer vision
fields. Specifically, in the field of pedestrian recognition, with the acquisition of RGB and depth images, RGB-D
dual-modal and RGB-D cross-modal pedestrian re-id tasks are proposed.
Some works [15, 25, 38] devote to the research of RGB-D dual-modal person re-id. They combine RGB and

depth information to jointly realize pedestrian recognition, which enhance the accuracy of recognition by forming
the complementation of two images. For example, literature [25] combines the color histogram extracted from
the RGB image and the pedestrian height feature captured from the depth image. John et al. [15] integrate RGB
height histogram and depth gait feature information. Xu et al. [38] exploit the depth data to assist RGB-based
pedestrian recognition. Work [28] boosts the accuracy of recognition by fusing the appearance features extracted
from RGB images and the anthropometric features captured from depth images.

A few papers [8, 9, 36, 43, 49] begin to concentrate on RGB-D cross-modal pedestrian re-id. Literatures [43, 49]
utilize hand-crafted features to identify pedestrians, which lack semantically abstract expression. To solve this
problem, several efforts [8, 9] have been devoted to constructing a RGB-D cross-modal deep network. They first
train the single-mode pedestrian recognition network with depth images. And then, these methods train the
single-mode recognition network with RGB images, which adopt distillation learning to constrain the similarity
between RGB and depth images taken at the same time, so as to reduce the gaps between these two modes.
This method has achieved significant performances. However, it can not be trained in an end-to-end pattern. To
solve this problem, work [36] puts forward an end-to-end heterogeneous restraint network, which suppresses
the differences between the two modalities by fully exploring cross-modal relationships. Cross-modal RGB-D
pedestrian recognition can be applied to scenarios where two modalities cannot be simultaneously obtained,
whose application scope is wider. Therefore, this paper focuses on the implementation of this task.
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The aforementioned RGB-D cross-modal methods intend to directly handle such huge modal discrepancy by
constraining and aligning two modalities, which may be difficult to converge. Hence, this paper proposes a novel
solution to narrow the differences between two modalities. Specifically, inspired by the success achieved by
RGB-IR cross-modal identification, we generate an auxiliary mode with two original modes and fully exploit it as
the bridge to decrease the modal gaps.

2.3 Self-supervised Learning
Self-supervised learning has drawn lots of attention due to its recent success, aiming at learning representations
from unlabeled data through accomplishing a pretext task that is derived from self-supervision. There are many
manually designed pretext tasks for pre-training, such as image colorization [44], jigsaw puzzle solving [27].
Contrastive learning has shown to be effective in self-supervised learning. Most existing methods [2, 11] perform
contrastive learning to enhance the representation ability for a single modality. The concept of contrastive
learning is applicable to any modal.

However, in the context of this downstream task, the dissimilarities between the two modalities are substantial,
posing challenges to direct contrastive learning. To tackle this issue, this paper introduces a modal-mix generation
method tailored to the task requirements. As a result, the paper is capable of leveraging a virtual modality as an
intermediary to bridge the gaps between the original modalities.This is achieved through a cross-modal contrastive
learning process that involves the splitting of the modality alignment. Distinguishing itself from existing pre-
training methods that combine data augmentation and contrastive learning to enhance representation learning,
this paper utilizes these techniques with a more specific and intuitive objective: the generation, decomposition,
and integration of multiple modalities in downstream tasks. This approach facilitates the mitigation of actual
modality differences.

3 METHODS

3.1 Problem Definition
RGB sample and depth sample are denoted as ('8,9 and (

�
8,9 , where ' and � stand for RGB modal and depth modal,

respectively. Subscript 8 is the category of the sample, 8 ∈ {1, 2, · · · ,�}, and � refers to the category number of
person. Subscript 9 represents the 9Cℎ image in the class 8 , 9 ∈ {1, 2, · · · , #8 }, and #8 refers to the image number
in the class 8 .

3.2 Overview
The overall framework of this paper is depicted in Fig. 2. We first produce intermediary mode ()8,9 with depth
image (�8,9 and RGB image ('8,9 through modal-mix, which is introduced in Sec. 3.3. Let ) denote the generation
modal type.

Afterward, we input three modalities into the proposed triple-stream network. The network first adopts three
un-shared shallow networks to extract modal-specific features '�8,9 , '

)
8,9 and '

'
8,9 from the images of three modals,

8 ∈ {1, 2, · · · ,�}, 9 ∈ {1, 2, · · · , #8 }. Then it exploits the shared deep network to extract the deep features of
three modes, ��8,9 , �

)
8,9 and �

'
8,9 , 8 ∈ {1, 2, · · · ,�}, 9 ∈ {1, 2, · · · , #8 }. � , ' and ) represent the type of modal. The

meanings of subscripts 8 and 9 are the same as those of the given samples. These features are first input into
self-supervised intermediary learning to promote the feature quality of generated modality, which is introduced
in Sec. 3.5.1. We then feed the deep features of three modes into the base loss, which is stated in Sec. 3.5.3.
We further input the obtained three modal features into the multi-modal transformer to fully explore the

relationships among three modals. This component aggregates the characteristics of three modalities by attending
to the learned heterogeneous relationships, whose output is constrained by identification consistency loss to
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Fig. 2. The overall framework of the intermediary-augmented bridge network (IBN). It consists of triple streams. We adopt
round, square and pentagon symbols to stand for the features. The symbol shape represents the feature modality and color
denotes the feature category. Best viewed in color.

enhance the cross-modalities interactions. The multi-modal transformer and identification consistency loss are
explained in Sec. 3.4 and Sec. 3.5.4, respectively.
Subsequently, we feed three modal features, which are integrated with multi-modal relationships, into circle

contrast learning. It decomposes the cross-modal contrast learning process of two original modalities into several
subprocedures, which carries out multiple contrastive learning to provide an intermediate relay for modal gap
suppression. The circle contrast learning is explained in Sec. 3.5.2.

3.3 Modal-mix
RGB images mainly contain the color and texture of the pedestrian, which are not included in depth images.
Besides, the depth image can display the three-dimensional geometric surface information of the person, which
is not available in the RGB image. Therefore, there is a tremendous gap between these two images.
To alleviate these gaps, we propose a modal-mix operation to generate the intermediate mode of the two

modes. Inspired by data augmentation method Mixup [42], we randomly sample RGB image ('8,91 and depth image
(�8,92 from class 8 , 8 ∈ {1, 2, · · · ,�}, 91, 92 ∈ {1, 2, · · · , #8 }. In order to simplify the notation, this paper uniformly
records 91, 92 as 9 in this subsection. We directly exploit the random linear combination of two modal images to
generate their virtual mode ()8,9 , which is calculated as follows:

()8,9 = [(
'
8,9 + (1 − [)(�8,9 (1)

Among that, [ ∼ V (1, 1), that is, variable [ obeys beta distribution.
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We construct #8 samples in each category 8 . In order to deduce and prove that the generated mode is the
intermediate state of two input modes, we first calculate the difference between RGB image ('8,9 and depth image
(�8,9 :

�'� =‖ ('8,9 − (�8,9 ‖ (2)

The difference between generation modal and RGB modal can be computed:

�'" =‖ ('8,9 − ()8,9 ‖
=‖ ('8,9 − ([('8,9 + (1 − [)(�8,9 ) ‖
=‖ ('8,9 − [('8,9 − (1 − [)(�8,9 ‖
= (1 − [) ‖ ('8,9 − (�8,9 ‖

(3)

Since [ ∈ [0, 1], �'" ≤ �'� . This illustrates the difference between RGB modality and generation modality is
smaller than that between RGB modality and depth modality.

Analogously, the difference between the generation modal and the depth modal is:

��" =‖ (�8,9 − ()8,9 ‖
=‖ (�8,9 − ([('8,9 + (1 − [)(�8,9 ) ‖
= [ ‖ (�8,9 − ('8,9 ‖

(4)

Since [ ∈ [0, 1], we can infer that ��" ≤ �'� . Consequently, we can reach a similar conclusion: The
discrepancy between the generated modality and each original modality is smaller compared to the disparity
between the two original modalities. Hence, the generated virtual modality can be considered as an intermediary
mode between RGB and depth modalities. It serves as a bridge between the two modalities, effectively reducing
their dissimilarities.

3.4 Multi-modal Transformer
In order to investigate the relationship among three modes for a given instance, we introduce the concept of a
multi-modal transformer. This module is composed of two distinct stages, as illustrated in Fig. 3. The primary
objective of the first stage is to acquire cross-modal correlations that enhance the representation of the input
modalities. This process facilitates a deeper understanding of the interdependencies among the distinct modes.
The second stage is specifically designed to integrate the appearance representations of the three modalities. In
this way, it allows for a comprehensive analysis of the combined information provided by each mode, leading to
a more holistic understanding of the instance.
Specifically, the features of three modalities, including ��8,9 , �

'
8,9 and �

)
8,9 , are evenly partitioned into # stripes

along the horizontal direction to capture detailed part-based features. Take ��8,9 ∈ R�×, ×�̄ as an example, �
and, represent the feature size, and �̄ represents the number of feature channels, it is divided into part-based
feature ��8,9,= ∈ R

�
#
×, ×�̄ , where = ∈ {1, 2, · · · , # } represents the stripe index. Then, average pooling is performed

on each stripe ��8,9,= to derive the pooled feature �̄�8,9,= ∈ R1×1×�̄ , which serves as a spatial element for the depth
feature. These # elements �̄�8,9,= are concatenated to create the feature sequence �̄

�
8,9 . We adopt the same operations

on �'8,9 and �
)
8,9 to capture feature sequences �̄'8,9 and �̄

)
8,9 . We feed the sequences of three modalities into the

multi-modal transformer network to comprehensively explore the cross-modal relations.
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In stage 1, it captures the cross-attention between various modalities with the shared cross-attention module
from feature sequences of three modalities. Take the left cross-attention module in Fig. 3 as an instance, the
cross-attention �0CC is formulated as follows:

& = !=( [�̄�8,9 , %�]) (5)

 = + = !=( [�E6(�̄'8,9 , �̄)8,9 ), %�]) (6)

�0CC (&, ,+ ) = B> 5 C<0G (& ·)A ( )
√
3:

)+ (7)

!=(), )A () and �E6() denote the linear layers, transposition and average operation, respectively. %� refers to
position embedding.

√
3: denotes the dimension of  . We assign the combination of �̄�8,9 and position encoding

(PE) as& . As the difference between RGB and depth modalities is significant, directly modeling their relationships
is rigid. Consequently, the cross-modal attention module attends to the cross-attention between depth mode
and the combination of RGB and intermediary modes. To this end, it conducts an average operation on �̄'8,9
and �̄)8,9 , incorporating the resulting outputs with PE to form  and + . This module is designed to capture
the cross-attention between each depth element �̄�8,9,= and the average outputs of elements �̄'8,9,= and �̄)8,9,= by
computing B> 5 C<0G (& ·)A ( )√

3:
). Thus, this paper captures the relationships between any two elements in RGB and

depth modals with the generated modal as the bridge. With the intermediate mode as the bridge, it is conducive
to smoothing the relation modelling procedure.

Next, it performs the cross-modal correlation embedding (CCE) operation to introduce the learned cross-modal
relationships into depth modal. It accumulates the obtained cross-attention relations for each depth element �̄�8,9,=
by multiplying cross-attention values B> 5 C<0G (& ·)A ( )√

3:
) with + . We add these relations to the depth element,

outputting ��8,9,= . All elements ��8,9,= are concatenated to form cross-modal sequence ��8,9 . �
'
8,9 is gained with the

same way. Meanwhile, it inputs the features of generated mode into the linear layer, which outputs �)8,9 .
In stage 2, the enhanced features of three modals obtained in stage 1 are connected together and inserted

with a class token at the beginning to form the triple-mode sequence. Then, multi-mode transformer exploits
the transformer encoder to obtain the pair-wise relationship from the triple-mode sequence due to its powerful
relationship modeling ability. Transformer encoder consists of ! blocks in series. Each block includes" attention
units in parallel. It accumulates the influence of all elements in the sequence for each element. In this way, each
element contains not only the relationships within the same mode, but also the relationships across various
modalities. Correspondingly, with the intermediate mode, the modeling process of heterogeneous relations
becomes more smooth. The outputs of ! blocks are denoted as )8 .

There are (3#+1) elements in)8 . The first element in)8 , i.e.,)8[0], integrates the information of three modalities,
which is denoted as integration features. This element is initialized randomly and it does not contain any modal
information. Therefore, integrating all modal clues into this element can avoid the bias towards a certain modality,
which is capable to reflect the statistical characteristics of the three modalities. The last 3# elements contain
three modal features that have considered the impacts of other modals, including )'8,9 , )

�
8,9 and )

)
8,9 . We input the

last 3# elements of )8 into circle contrast learning and )8[0] into identification consistency loss respectively,
which are described in Sec. 3.5.2 and Sec. 3.5.4.

Unlike existing methods that utilize the transformer structure solely for establishing self-attention within
single-mode images, this paper takes a different approach. Here, the transformer component is employed to
model the intricate relationships among various modes and facilitate modal fusion. As a result, the objective of
this paper is more focused and specific. Instead of applying transformers within individual modes, the aim is to
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Fig. 3. The overview of the proposed multi-modal transformer.

leverage their capabilities to capture cross-modal dependencies and achieve fusion across different modalities.
This novel approach allows for a more comprehensive analysis and understanding of the interplay between
modes, leading to enhanced overall performance.

3.5 Loss Functions
We begin by introducing the contrastive learning constraints applied to the generated modality, referred to
as self-supervised intermediary learning. Next, we provide detailed explanations of the contrastive learning
constraints applied to the RGB/depth modalities, which are denoted as circle comparative learning. Following
that, we present the base loss and identification consistency loss. Lastly, we define the overall loss function.

3.5.1 Self-supervised Intermediary Learning. As aformentioned, this paper produces generated samples to bulid a
bridge for RGB and depth modalities for narrowing their gaps. The quality of generated samples is determined by
their intermediary effect. The more obvious the reduction in disparity between the RGB and depth modalities,
the superior the quality of the generated samples.

However, the quality of certain generated samples cannot be guaranteed due to the inherent randomness in the
modal generation process. Additionally, the paper does not leverage the prior properties of the original modalities
as supplementary cues to guide the mode generation. It is time-consuming to measure the quality of generated
samples by evaluating the differences between the RGB and depth modalities after introducing the generated
samples. To enhance the quality of the intermediate mode features in such scenarios, we draw inspiration from
self-supervised learning. Consequently, this paper adopts a contrast learning pattern to establish cross-modal
constraints between the generated modality and the input modalities, achieving this without supervision.
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Specifically, we carry out self-supervised intermediary learning to enhance the representations ability of
intermediate modal by constraining the features of the generated sample to be more similar to the original ones.
Namely, it enforces the features of intermediary sample �)8,9 to be more similar to those of RGB sample �'8,9 and
depth sample ��8,9 , 9 ∈ {1, 2, · · · , #8 }, where each element �)8,9 is generated with �'8,9 and �

�
8,9 . Here, �

'
8,9 and �

�
8,9 are

uniformly denoted as �"8,9 ," ∈ {', �}. To this end, this method calculates the cosine similarity between �)8,9 and
�"8,9 , i.e., �

)
8,9�

"
8,9 . Here we enforce all vectors to be L2-normalized feature embeddings, i.e., ‖ �'8,9 ‖= 1, ‖ �"8,9 ‖= 1.

Afterward, the self-supervised intermediary learning loss is formed as follows:

!C−A3 =
∑

","∈{',� }
!"C (8)

Among that, !"C is computed as follows:

!"C = − log
4G? (�)8,9�"8,9/g)

4G? (�)
8,9
�"
8,9
/g) +∑

=

∑
: 4G? (�)8,9�"=,:/g)

, " ∈ {', �}

= ∈ {1, 2, · · · ,�}&= ≠ 8;: ∈ {1, 2, · · · , #=}
(9)

g refers to a hyper parameter that controls data distribution level. Higher g leads to a softer probability
distribution. We set it to 0.2 in this paper.
This loss function is designed to strengthen the similarity between �)8,9 and its corresponding �'8,9 and �

�
8,9 ,

effectively bringing the generated modality closer to the two original modalities. By doing so, it effectively
enhances the transition effect of the generated samples, thereby improving their overall quality.

3.5.2 Circle Contrastive Learning. Pulling two original modalities closer is the core of cross-modal constraints in
this paper. To this end, this paper conducts contrastive learning on RGB and depth modalities with the bridge of
generated modality. As depicted in Fig. 2, the bidirectional cross-modal contrastive learning forms a closed loop,
so we term it as circle contrastive learning !2< .

As there exists tremendous modal gap between RGB and depth modalities, circle contrastive learning initially
prompts the features of the two original modalities to approach those of the generated modality before bringing
them closer together. By doing so, the generated modality acts as an intermediary relay, facilitating the establish-
ment of connections and bridging the gaps between the input modalities. This procedure notably enhances the
effectiveness of the subsequent pulling constraints on the two original modalities.

Specifically, for the RGBmodality, circle contrastive learning performs two essential restricts. Firstly, it executes
a cross-modal bridge loss !)A which encourages the RGB samples )'8,9 to resemble more closely the intermediary
modality ))8,9 . In this way, the generated modality can function as an intermediary relay. Secondly, it employs a
cross-modal contrast loss !�A to bring )'8,9 closer to )

�
8,9 , effectively reducing the existing modal gaps. Thus, the

circle contrastive learning for the RGB modality can be collectively denoted as !�A , � ∈ {), �}, and is computed
as follows:

!�A = − log
4G? ()'8,9)�8,9/g)

4G? ()'
8,9
)�
8,9
/g) +∑

=

∑
: 4G? ()'8,9)�=,:/g)

, � ∈ {), �}

= ∈ {1, 2, · · · ,�}&= ≠ 8;: ∈ {1, 2, · · · , #=}
(10)

Similarly, for the depth modality, circle contrastive learning not only carries out cross-modal bridge loss !)
3

to encourage the depth samples )�8,9 to resemble more closely the intermediary modality ))8,9 , but also employs
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cross-modal contrast loss !'
3
to bring the representations of )�8,9 closer to )

'
8,9 . The circle contrastive learning for

the depth modality can be uniformed denoted as !�
3
, � ∈ {), '}, which is computed as follows:

!�
3
= − log

4G? ()�8,9) �8,9/g)
4G? ()�

8,9
) �
8,9
/g) +∑

=

∑
: 4G? ()�8,9) �=,:/g)

, � ∈ {), '}

= ∈ {1, 2, · · · ,�}&= ≠ 8;: ∈ {1, 2, · · · , #=}
(11)

To narrow the gap between the RGB and depth modalities after establishing their bridge with the intermediate
modality, the circle contrastive learning !2< is formulated as follows:

!2< (4) = !)A (4) + !)3 (4) +
1

1 + E(!)A (4 − 1) + !)
3
(4 − 1))

× (!�A (4) + !'3 (4)) (12)

Where 4 represents the current training epoch. E(.) refers to the average loss value from previous epochs. The
coefficient associated with (!�A (4) + !'3 (4)) is inversely proportional to the sum of E(!)A (4 − 1) + !)

3
(4 − 1)). This

deliberate relationship between the coefficients and the average loss values allows for a gradual increase in the
constraint weights between the two original modals. As the features of the input modes become more similar
to those of the intermediary mode, the intermediate relay is effectively established. Subsequently, the method
incrementally enhances the emphasis on constraints pertaining to the original modes. By gradually increasing
the proportion of these constraints, the process of reducing the modal gaps is smoothed out, resulting in a more
efficient and effective alignment of the modalities. This progressive adjustment of the constraint coefficients aids
in achieving a more balanced and coherent fusion of the original modes within the intermediate representation.
In addition to reducing the dissimilarity between positive cross-modal sample pairs, this loss function also

contributes to diminishing the similarities between negative cross-modal sample pairs. By doing so, it reinforces
the discriminative nature of the learned features, ultimately enhancing the overall performance of the model.

3.5.3 Base Loss. Base loss is comprised of triplet loss [13] and softmax loss [23]. Specifically, we input features
��8,9 , �

)
8,9 and �

'
8,9 into the triplet loss, which first selects sample of one modality as an anchor, and chooses the

positive and negative samples from features of the remaining two modalities. The distances between the positive
sample pairs are denoted as 3? , and those of negative sample pairs are termed as 3= . The triple-modal triplet loss
is recorded as !C in this paper, which is calculated as follows:

!C = [3? − 3= + U]+ (13)
U is the margin of the triplet loss, which is set to 0.3 and [I]+ represents the function<0G (I, 0).
Subsequently, we input ��8,9 , �

)
8,9 and �

'
8,9 into batch normalization (BN) layer and fully connected (FC) layer to

obtain features ��8,9 , �
)
8,9 and �

'
8,9 . These features are input into softmax loss function which is recorded as !B in

our method. The probabilities assigned to the class 2 , 2 ∈ {1, 2, . . . ,�}, for feature �08,9 , 0 ∈ {', �,) }, are obtained
as follows:

? (2 |�08,9 ) =
4
�0
8,9,2∑�

:=1 4
�0
8,9,:

(14)

�08,9,2 refers to the 2Cℎ channel of feature �08,9 . !B is formulated as below:

!B = −
�∑
2=1

log(? (2))@(2) (15)
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Let 6 be the ground-truth, @(6) = 1. Otherwise, @(=) = 0 for = ≠ 6. In this case, minimizing the softmax loss is
equivalent to maximizing the possibility of being assigned to the ground-truth class.

We record the sum of the !C and !B as !1 .

3.5.4 Identification Consistence Loss. In order to strengthen the multi-modal constraint, we input the integration
features into the identification consistency loss. This loss adopts the widely used softmax pattern shown in
Eq. 15, which is termed as !82 in this paper. It drives the features that aggregate three modalities and their
relations to meet with identification constraints. Therefore, it can effectively exploit the correlations among
various modalities to optimize the features of each modality towards the direction of identification consistency. It
favors promoting multi-modal correlations by reinforcing heterogeneous constraints, consequentially narrowing
the modal discrepancy.

3.5.5 Overall Loss. The overall loss function of network is calculated as follows:

! = !1 + !C−A3 + !2< + !82 (16)

4 EXPERIMENTS

4.1 Datasets and Evaluation Protocol
4.1.1 Dataset. RobotPKU dataset:This work [20] captures the RobotPKU dataset through Microsoft Kinect
camera, which consists of 90 people with 16512 images in depth and RGB modalities. There exists a slight time
delay between these two modalities. Some depth images in this dataset miss a part of body, which brings a greater
challenge to cross-modal identification. Following the works [8, 36], we randomly sample 40 persons for training,
10 persons for validation and the remaining individuals for testing.

BIWI dataset: Work [26] utilizes the Microsoft Kinect camera to capture the long-term depth and RGB
sequence pairs in BIWI dataset. Specifically, it is comprised of 78 individuals with 22038 images in two modals,
which regards the same human with distinct clothes as a separate instance. We conduct the same partitions as
methods [8, 36] for the fair evaluation on BIWI dataset. Namely, we randomly select 32 instances for training, 8
individuals for validation and 38 persons for testing.

4.1.2 Evaluation Metrics. In RGB-D cross-modal re-id task, there are two testing mechanisms: RGB-D and D-RGB.
For RGB-D testing mode, query is given in RGB modal, gallery is comprised of depth images. For D-RGB testing
pattern, query is given in depth modal while gallery consists of RGB images.

For these twomechanisms, the cumulative matching characteristic (CMC) curve and the mean average precision
(mAP) are adopted for the performance evaluation. For each query, its average precision (AP) is calculated from the
precision-recall curve, and mAP refers to the mean value of AP within all queries. This paper lists the cumulated
matching result at selected Rank-=, = ∈ {1, 5}. The experiments are repeated 10 times to gain the average results
for stable comparison.

4.2 Implementation Details
In RGB-D cross-modal person recognition task, it reduces the influence of complex background in the original
image following method [36]. Specifically, we perform the detection algorithm [30] to detect pedestrians, and
cut out the pedestrian regions accordingly. We discard the images without detected pedestrians. The proposed
method uniformly resizes the input images to 288 × 144 size in two tasks.

The shallow networks all consist of the initial convolution layer of ResNet50 [12].The deep network is composed
of ResNet50 block1-4. The offline network is trained for 60 epochs. Each training batch samples 4 instances with
32 image pairs from two modalities. This paper applies stochastic gradient descent optimizer, which sets the
weight_decay to 5e-4 and the momentum to 0.9. The setting of learning rate uses a warm-up learning strategy
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with the initial learning rate of 0.1, which follows method [24]. The ResNet50 network is pre-trained on ImageNet
dataset [5]. This paper trains the whole network on a single Nvidia GTX 1080 Ti GPU with Pytorch framework.

During the testing phase, we adopt the features outputted by shared deep extractor for cross-modal matching.
The optimization process of the features extractors is guided by the decomposition and integration learning
within multiple modalities, which are beneficial to strengthen modal correlation and narrow modal differences.

4.3 Comparisons with State-of-the-arts

Table 1. Comparisons with the state-of-the-art on RobotPKU dataset.

Method RGB-D D-RGB
Rank-1 mAP Rank-1 mAP

LOMO+XQDA [18] 12.9 10.1 12.3 12.3
WHOS+XQDA [19] 10.0 8.2 9.8 9.8

Zero-padding network [35] 7.8±0.9 7.7±0.6 6.6±0.6 8.3±0.6
One-stream network [35] 11.9±0.6 11.4±0.5 12.5±1.0 14.2±1.4

Cross-modal distillation network [8] 17.5±2.2 17.1±1.9 19.5±2.0 19.8±2.1
Work [9] 25.3±2.0 23.5± 2.0 22.9±1.8 22.4±1.9
HRN [36] 23.1 17.3 25.7 23.5
IBN (Ours) 31.8 25.1 29.1 24.9

Results on RobotPKU dataset: Table 1 displays the comparison results between our method and state-of-the-
arts on RGB-D RobotPKU dataset, which lists two testing cases. The comparison methods include: LOMO+XQDA
[18], WHOS+XQDA [19], zero-padding network [35], one-stream network [35], cross-modal distillation network
[8], work [9] and heterogeneous restraint network (HRN) [36]. Since only some methods begin to concentrate on
this task, the number of listed compared methods is small.
For RGB-D testing mode, our method IBN can achieve 31.8% Rank-1 matching rate and 25.1% mAP, whilst

12.9% and 10.1% for LOMO+XQDA, 10.0% and 8.2% for WHOS+XQDA, 7.8% and 7.7% for zero-padding network,
11.9% and 11.4% for one-stream network, 17.5% and 17.1% for cross-modal distillation network, 25.3% and 23.5%
for work [9], 23.1% and 17.3% for HRN. It can be observed that the proposed method realizes the advantages in
both Rank-1 matching rate and mAP compared with these existing methods.
For D-RGB testing pattern, our method IBN surpasses all current approaches, which reaches the Rank-1

matching rate of 29.1% and mAP of 24.9%. It yields relative improvements of 3.4% at Rank-1 over the second-best
method HRN.This indicates the effectiveness of our proposed approaches. IBN is capable of obtaining outstanding
identification results in both testing cases, which illustrates that its application range is wide.

Results on BIWI dataset:We compare our approach with the state-of-the-arts in terms with RGB-D cross-
modal recognition task on BIWI dataset, such as LOMO+XQDA [18], method [49], ICMDL [43], zero-padding
network [35], one-stream network [35], cross-modal distillation network [8], work [9] and heterogeneous restraint
network (HRN) [36]. The results of the two testing cases are shown in Table 2.
For RGB-D testing mode, our approach outperforms all listed methods. More precisely, IBN achieves 49.7%

Rank-1 matching rate and 42.2% mAP. In contrast to the most relevant method HRN, IBN is superior to it by 5.8%
and 11.3% at Rank-1 and mAP. All these experiments validate that the improvement components proposed by
our method are beneficial to enhance the performance of cross-modal identification.
In terms of D-RGB testing case, our method can still achieve competitive performances. IBN obtains Rank-1

matching rate of 48.6% and mAP of 44.9%. Specifically, it raises the Rank-1 matching rate over the best compared
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Table 2. Comparisons with the state-of-the-art on BIWI dataset.

Method RGB-D D-RGB
Rank-1 mAP Rank-1 mAP

LOMO+XQDA [18] 13.7 12.9 16.3 15.9
Work [49] 12.1 - 11.3 -
ICMDL [43] - - 7.1 17.5

Zero-padding network [35] 5.9±2.2 7.3±4.0 10.3±2.7 9.8±3.8
One-stream network [35] 15.7±0.8 16.9±0.9 19.8±0.3 23.8±0.3

Cross-modal distillation network [8] 26.9±1.8 27.3±1.7 29.2±2.3 30.5±2.0
Work [9] 40.4±2.1 41.3± 1.8 42.8±3.9 43.9±3.9
HRN [36] 43.9 30.9 47.1 44.6
IBN (Ours) 49.7 42.2 48.6 44.9

method HRN by 1.5% on this dataset. The proposed method is capable to obtain a promising performance in
various RGB-D cross-modal recognition benchmarks.

4.4 Ablation Studies
4.4.1 Parameter Validation. Multi-modal transformer embraces ! blocks in series, and each block contains"
parallel attention units. Therefore, ! and " are two key hyperparameters in the proposed network. We carry
out the person identification on the BIWI validation dataset to determine the parameters ! and " . We initialize
variables ! and" with 3 and 4. First, we fix the value of" and linearly increase ! from the initial value 3 to 7
with interval of 1. The results are shown in Fig. 4. It can be observed that the identification performance curve
(mAP) first displays a growing trend with the increase of !. This is because deeper networks can embrace more
powerful modeling capabilities. When ! equals 6, the network performance reaches the best in both mAP and
Rank-1. Therefore, ! is set to 6 in subsequent experiments.

3 4 6 75

Layer Number L

35

37

39

41

43

45

47

49

P
e
rf

o
rm

a
n
c
e

Rank-1
mAP

Fig. 4. Parameter validation of ! on BIWI dataset.

2 4 8 106

Parameter M

26

28

30

32

34

36

38

40

42

44

46

48

P
er

fo
rm

an
ce

Rank-1
mAP

Fig. 5. Parameter validation of" on BIWI dataset.

In addition, we fix the value of ! to 6, and linearly increase" from 2 to 6. The experimental results are shown in
Fig. 5. It can be observed that the network performance has been improved with the increase of" . This is because
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richer multi-modal relationships are obtained via larger network, which enhances recognition performance.
When " reaches 4, a relatively superior result can be obtained. Then, with the increase of " , the recognition
performance begins to drop. This is because the learned content is redundant with the expansion of the network.
Therefore," is set to 4 in this paper.

4.4.2 The Effectiveness of Intermediary Modal. In this paper, as the gap between two input modes is obvious, we
introduce their intermediary mode for suppressing these differences. Although we have theoretically deduced its
effectiveness, we still intend to testify its actual experimental effect in this part. To this end, we remove this mode
from the proposed method to observe performance variation. Specifically, without the intermediary mode, the
comparison approach becomes a dual-flow network. It replaces the triple-mode transformer with a dual-mode
transformer, which is used to model the relationship between two original modes. Besides, there are !�A and !'

3

left in the cross-modal contrast learning. Namely, except the intermediary mode, the remaining parts of this
comparison method keep unchanged for fair comparison.
We denote the comparison method as “w/o intermediary mode”, and its experimental results are shown in

Table 3. The method without intermediary mode deteriorates the performances of Rank-1 with absolute declines
of 2.5% and 1.1% compared to our method with this modal on RobutPKU dataset for two testing mechanisms
respectively. These results demonstrate the ability of intermediary modality in guiding the improvement of
cross-modal person recognition. The intermediary mode builds a bridge for two original modes, which is more
conducive to narrowing the differences between them, thus promoting the results of cross-modal identification.
To analyze the effectiveness of self-supervised intermediary learning, we evaluate the variant where this

supervision is removed. The results on RobutPKU dataset are presented in Table 3. The method with this part
tops over the variant with the absolute gains of 0.9% and 1.1% in terms of Rank-1 and mAP for RGB-D testing
mechanism.This indicates that self-supervised contrastive learning offers a powerful constraint for the generation
of intermediary mode, which helps promote the quality of the representations of intermediary mode.

Table 3. The effectiveness validation of the intermediary mode on RobutPKU dataset. “w/o” means “without”.

Method Testing Mode Rank-1 Rank-5 mAP

w/o Intermediary mode RGB-D 29.3 69.9 18.6
D-RGB 28.0 58.3 17.9

w/o self-supervised intermediary learning RGB-D 30.9 69.1 24.0
D-RGB 28.6 59.1 24.1

IBN (Ours) RGB-D 31.8 70.4 25.1
D-RGB 29.1 60.7 24.9

4.4.3 The Effectiveness of Multi-modal Transformer. We remove the multi-modal transformer on RobutPKU
dataset to analyze its effect on the visual cross-modal person re-id task. The remaining parts stay unchanged
for fair comparison. The experimental results are displayed in Table 4. We observe that abandoning this module
descends the Rank-1 by 1.2% and 1.5% in terms of two testing modes on RobutPKU dataset respectively, which
emphasizes its role by contrary. This is because the multi-modal transformer can not only obtain the relationships
within the same mode, but also model the relationship among different modes. In addition, it integrates the
features of various modes, strengthening cross-modal association to enhance the performance of cross-modal
person re-id.

4.4.4 The Effectiveness of Circle Contrastive Learning. In this paper, circle contrastive learning is exploited to
pull heterogeneous modes closer. To demonstrate the contributions of this component, we conduct a comparative
experiment by detaching it. The results on RobutPKU dataset are listed in Table 5. We find that the method
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Table 4. The effectiveness validation of the multi-modal Transformer (denoted as multi-modal T) on RobutPKU dataset.
“w/o” means “without”.

Method Testing Mode Rank-1 Rank-5 mAP

w/o multi-modal T RGB-D 30.6 70.2 21.3
D-RGB 27.6 58.3 22.7

IBN (Ours) RGB-D 31.8 70.4 25.1
D-RGB 29.1 60.7 24.9

without the supervision of the circle contrastive learning degrades the performances of Rank-1 and mAP with
the drops of 1.7% and 2.5% in contrast to our method with it in terms of RGB-D testing mode. Circle contrastive
learning provides the intermediate relay for suppressing the gaps between two original modes. Therefore, this
cross-modal learning can effectively reinforce the recognition accuracy of cross-modal networks.
Besides, we carry out the variant to validate the effect of cross-modal bridge learning by removing this

component. The results on RobutPKU dataset are listed in Table 5. It can be seen that our approach with cross-
modal bridge learning is superior to that of variant by 0.6% with regards to Rank-1. Cross-modal bridge learning
produces the link effects for the reduction of modal gaps, which is beneficial to promote the performance of
cross-modal recognition.

Table 5. The effectiveness validation of the circle contrastive learning on RobutPKU dataset. “w/o” means “without”.

Method Testing Mode Rank-1 Rank-5 mAP

w/o circle contrastive learning RGB-D 30.1 68.5 22.6
D-RGB 27.5 58.3 23.9

w/o cross-modal bridge learning RGB-D 31.2 69.9 24.8
D-RGB 28.6 60.2 24.5

IBN (Ours) RGB-D 31.8 70.4 25.1
D-RGB 29.1 60.7 24.9

4.4.5 The Investigation of Usage of Mixup Ratio [. The proposed modal-mix mechanism determines the generated
modality using a random mixup ratio, denoted as [. We aim to explore the impact of incorporating this random
ratio into subsequent contrastive learning, observing how distinct usages of the mixup ratio affect the proposed
approach. Specifically, in self-supervised intermediary learning and circle contrastive learning, we assign the
random mixup ratio [ (1-[) as the learning weight for contrastive learning between generated modal and RGB
(depth) modal. This variant is denoted as “contrastive learning w/ mixup ratio”. The results on RobutPKU dataset
are presented in Table 6. It can be seen that our approach is superior to that of variant in terms of Rank-1 and
mAP. In the majority of methods, the learning weights are either acquired through network training or manually
configured based on validation experimental outcomes. In this experiment, the learning weights are randomly
generated. Since the difficulty of contrastive learning cannot be accurately estimated through a random mixup
ratio, incorporating it as the weight might introduce interference, thereby potentially weakening the identification
performance.

4.4.6 The Investigation of Other Generation Methods. This paper adopts Mixup [42] to produce the generated
modal, which is supervised by self-supervised intermediary learning. Mixup has inspired various variants, such
as part-based Cutmix [41] and feature-level Mainfoid Mixup [32]. We substitute the Mixup opeation with these
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Table 6. The investigation of usage of the mixup ratio [ on RobutPKU dataset. “w/” means “with”.

Method Testing Mode Rank-1 Rank-5 mAP

contrastive learning w/ mixup ratio RGB-D 30.6 70.3 22.6
D-RGB 28.6 60.1 23.4

IBN (Ours) RGB-D 31.8 70.4 25.1
D-RGB 29.1 60.7 24.9

typical variants, to explore the effects of different generation methods on the proposed approach. The results on
RobutPKU dataset are listed in Table 7. It can be observed that the method with feature-level Manifold Mixup
exhibits slightly improved rank-1 accuracy but lower performance in mAP compared with the method with Mixup.
This suggests that the generation methods at the feature-level yield similar effects as those at the image-level in
our method. This could be attributed to the fact that our method imposes self-supervised intermediary learning on
the generated features. Besides, it can be seen that the method with part-based Cutmix significantly outperforms
all other generation methods. Part-based generation methods may help provide more abundant generation
samples to construct bridges for original modals, indicating potential avenues for further research in future work.

Table 7. Comparisons with other generation methods on RobutPKU dataset.

Method RGB-D D-RGB
Rank-1 mAP Rank-1 mAP

Ours + Mixup [42] 31.8 25.1 29.1 24.9
Ours + Mainfoid Mixup [32] 32.1 23.7 28.8 24.8

Ours + Cutmix [41] 37.4 27.0 33.4 26.9

4.5 Visualization
4.5.1 Modal Difference Visualization. In order to further prove that the proposed method can decrease the modal
differences between two original modes, we count the feature difference between these two modes in our method
and baseline (omitting all proposed components).

Because cross-modal positive sample pairs can reflect the modal difference situation, we calculate the Euclidean
distances between testing features of all positive pairs in these two methods. Here we enforce all feature vectors
to be L2-normalized embeddings to ensure a fair comparison. The statistical histogram results of BIWI dataset
are listed in Fig. 6. It can be seen from the figure that the distributions of feature differences obey the normal
distribution in the two methods. The mean of feature difference in our method (pink histogram) is smaller
than that in the baseline, so IBN successfully reduces the feature differences between two original modes. This
is because the proposed method introduces the intermediate mode of two input modes. Besides, it exploits
cross-modal contrast learning to pull the representations of two modes closer by building a bridge with the
intermediate modal. Furthermore, this approach makes full use of the relationships among three modes, thus
promoting cross-modal interactions.

4.5.2 Training Process Analysis. In this paper, the intermediate mode is produced to decrease the gaps between
two input modalities. Compared with the existing methods that directly pull these two modalities closer, our
method extra utilizes the intermediate mode as the bridge, which smooths the learning process of cross-modal
identification network. In order to validate this advantage, we visualize the loss situations of “w/o Intermediary
mode” and our method in Fig. 7 for comparison. It can be observed that our method with intermediate mode
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Fig. 6. Modal difference visualization. The distances of positive pairs in the proposed method are displayed in pink histogram,
while those of baseline are shown in blue histogram. Best viewed in color.

can converge at the 40Cℎ epoch, while the comparison network converges at the 50Cℎ epoch. The decline slope
of the loss function is larger in our method. So, our method is easier to converge, whose training process is
more smooth. This is because the differences between the two modes are too large to directly decrease. In this
paper, the intermediate mode of two original modes is constructed, which builds a bridge for narrowing the gaps
between two modes. Therefore, the convergence process of the proposed network is more smooth.

Fig. 7. Comparison of loss curves (after smooth) on BIWI dataset. The abscissa is the training epoch number and the ordinate
is the loss value. “w/ Intermediary mode” and “w/o Intermediary mode” represent with and without the intermediary mode,
resp.
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Fig. 8. Feature visualization of the proposed approach and the baseline method on the BIWI dataset.

4.5.3 Feature Visualization. In order to analyze the performance of the proposed method in depth, we visualize
the characteristics of the proposed method and baseline method (omitting all proposed components). The images
in the upper two lines display the feature visualization results of two modals in our method. The RGB and depth
image pairs in the same column are taken at the same time. The images in the next two lines show the feature visu-
alization results of the same image pairs in baseline. Through visualization, we can draw the following conclusions:

(1) Compared with baseline, the features of our method better depict the pedestrian contour. As we see, the
pedestrian viewpoints are various in these images. The ratio information of head and neck owns superior ro-
bustness to the viewpoint variance, which is common in two input modes. Therefore, two modal features in our
method and baseline mainly focus on the upper body of pedestrians, that is, the head-shoulder region. It can be
seen that the focus area of our features is more consistent with the shape of the head-shoulder. The features of
depth images in our method display the outline of pedestrians better compared with baseline. This is because the
improvement components proposed in this paper are beneficial to learn these common features of the RGB and
depth modalities, which can promote the discrimination of features.

(2) In contrast to baseline, the discrepancy between two modal features is smaller in the proposed method.
Concretely, the features of two modalities pay attention to similar regions in our method, i.e., the upper body of
person. The distributions of two features are more similar as well, that is, the feature weights mainly distribute in
the upper body and a small part of weights locate in the lower body. However, there is a slight deviation for the
focus regions of two features in baseline. Some RGB features focus on the upper body, while their corresponding
depth features only concentrate on the whole body, such as the second column. The visualization results validate
that the proposed method successfully narrows the gaps between two input modes. This is because this paper
constructs an intermediary modality and fully exploits this modal to bridge the modal gaps.
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4.6 Generalization Verification
As the proposed method generates an auxiliary mode without prior properties and module parameters, it can be
applied to arbitrary visual cross-modal recognition tasks. To prove its generalization, this paper deploys it on the
RGB-IR cross-modal re-id task. We choose a large RGB-IR dataset to realize the verification, i.e., SYSU-MM01
dataset [35]. This dataset is comprised of 395 instances with 22258 RGB images and 11909 infrared images 4
visible and 2 near-infrared cameras.

Table 8. Effeciency analysis of different components on SYSU-MM01 dataset in terms of all-search testing mode. MG denotes
modal generation, MT refers to multi-modal transformer, and CCL refers to the circle contrastive learning. ‘

√
’ symbol

indicates that the corresponding element is adopted, and ‘-’ denotes that the corresponding element is not included.

Method MG MT CCL Rank-1 Rank-10 mAP
baseline - - - 60.3 89.5 57.6
model A

√
- - 62.2 90.1 60.6

model B
√ √

- 67.5 92.1 63.7
IBN (ours)

√ √ √
70.8 96.1 67.1

Firstly, we carry out the ablation studies on SYSU-MM01 dataset. A baseline model is created, omitting all
proposed components. Subsequently, the proposed components are gradually incorporated into the baseline
model, resulting in the creation of three additional models: model A, model B, and model IBN. The results depicted
in Table 8 demonstrate that the three key components can boost RGB-IR recognition performance. The role of
multi-modal transformer is more significant in larger SYSU-MM01 dataset compared with RobutPKU dataset.
This is because training data is more sufficient in SYSU-MM01 dataset. These experimental results illustrate that
our method can be flexibly applied to various cross-modal pedestrian recognition, implyling its generalization.
Secondly, we compare the proposed method with the related Mixup-based methods, including MID [14] and

Partmix variants [16]. They all adopt Mixup-based approaches to generate additional modalities. Note that
the proposed approach is different from these RGB-IR Mixup-based methods. Their differences and
relations have been stated in Sec. 2.1. We group these methods based on the mix pattern they adopt to
ensure comparison fairness. The comparison results are displayed in Table 9. Regarding the Mixup pattern, it
can be observed that the proposed “IBN+Mixup” outperforms previous methods with the same mix pattern. This
superiority stems from leveraging self-supervised intermediary learning to enhance the quality of generated
modalities. Besides, this paper extra puts forward a bridge network to adequately mine the bridge role of generated
intermediary modal by capturing the correlations among distinct modalities. In addition, for the Mainfoid-based
methods, the rank-1 performance of “IBN+Mainfoid Mixup” also demonstrates superiority. In terms of Cutmix-
based approaches, “IBN+Cutmix” still offers significant performance gains, boosting the rank-1 accuracy of
its baseline by 11.9%. However, the performance of “IBN+Cutmix” slightly lags behind that of the “Partmix
Framework+Cutmix”. This disparity arises because the proposed method is tailored for RGB-D tasks and is
directly applied to the RGB-IR task. Moreover, it can be seen that the performances of IBN are less sensitivity
to changes in mix patterns compared to the Partmix [16]. Namely, the performances of IBN vary slightly with
various mix patterns. This robustness can be attributed to the additional constraints imposed on the generated
modalities through self-supervised intermediary learning, ensuring the quality of the generated modalities.

5 CONCLUSION
This paper presents a novel RGB-D cross-modal person re-identification method that effectively utilizes transition
information from the original two modalities without relying on networks or prior information. This approach is
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Table 9. Comparisons with the most related methods on SYSU-MM01 dataset in terms of all-search testing mode.

Mix Pattern Method Rank-1 mAP

Mainfoid Mixup [32] Partmix Framework [16] 71.3 67.7
IBN (Ours) 71.5 67.8

Cutmix [41] Partmix Framework [16] 73.4 70.7
IBN (Ours) 72.2 68.6

Mixup [42]
Partmix Framework [16] 51.5 46.3

MID [14] 60.3 59.4
IBN (Ours) 70.8 67.1

simple yet effective. To fully leverage the capabilities of the intermediary mode in bridging modal discrepancies,
this paper performs both decomposition and integration operations. On one hand, a multi-modal transformer is
designed to integrate the information from the three modes by establishing their heterogeneous relations. This
transformer applies an identification consistency constraint to enhance cross-modal associations, ensuring a
more robust and reliable feature representation. On the other hand, the paper employs circle contrast learning to
decompose the process of cross-modal constraints. This approach introduces an intermediate relay, suppressing
modal gaps and enhancing the alignment between modalities. Extensive experiments conducted on various public
datasets demonstrate that the proposed method surpasses state-of-the-art approaches in RGB-D cross-modal
person re-identification. Through these experiments, the effectiveness of each component within the proposed
method has been thoroughly evaluated and validated.
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