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Emotional Video Captioning With Vision-Based
Emotion Interpretation Network

Peipei Song , Dan Guo , Senior Member, IEEE, Xun Yang , Shengeng Tang , and Meng Wang , Fellow, IEEE

Abstract— Effectively summarizing and re-expressing video
content by natural languages in a more human-like fashion is one
of the key topics in the field of multimedia content understanding.
Despite good progress made in recent years, existing efforts
usually overlooked the emotions in user-generated videos, thus
making the generated sentence a bit boring and soulless. To fill
the research gap, this paper presents a novel emotional video
captioning framework in which we design a Vision-based Emo-
tion Interpretation Network to effectively capture the emotions
conveyed in videos and describe the visual content in both factual
and emotional languages. Specifically, we first model the emotion
distribution over an open psychological vocabulary to predict
the emotional state of videos. Then, guided by the discovered
emotional state, we incorporate visual context, textual context,
and visual-textual relevance into an aggregated multimodal
contextual vector to enhance video captioning. Furthermore,
we optimize the network in a new emotion-fact coordinated way
that involves two losses—Emotional Indication Loss and Factual
Contrastive Loss, which penalize the error of emotion prediction
and visual-textual factual relevance, respectively. In other words,
we innovatively introduce emotional representation learning into
an end-to-end video captioning network. Extensive experiments
on public benchmark datasets, EmVidCap and EmVidCap-S,
demonstrate that our method can significantly outperform the
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state-of-the-art methods by a large margin. Quantitative ablation
studies and qualitative analyses clearly show that our method
is able to effectively capture the emotions in videos and thus
generate emotional language sentences to interpret the video
content.

Index Terms— Emotional video captioning, emotion analysis,
emotion-fact coordinated optimization.

I. INTRODUCTION

RAPID development of deep neural networks has made
remarkable progress in objective and factual vision

understanding, such as image classification [1], object detec-
tion [2], action recognition [3], and video captioning [4].
Among these visual tasks, video captioning is a fundamental
but more challenging task due to the inherent semantic gap
between vision content and natural language, thus attracting
increasing research attention in recent years from both com-
puter vision and natural language processing communities.
Despite great success achieved by advanced video captioning
models, most existing efforts usually overlooked the emo-
tions conveyed in user-generated videos, which can only
translate the video content into factual yet boring language
sentences [4], [5]. Note that, more and more young people
nowadays express emotions by sharing daily life images or
short videos on social network platforms, such as WeChat,
Twitter, and Instagram. Emotion is an essential factor to
describe visual content more accurately and attractively in
language [6], [7], which can be effectively captured from
human facial expression, action, and pose, etc. For example,
a scene of two men are drinking can express different emotions
depending on the men’s emotional state (happy or distressed).
As shown in Fig. 1 (a∼c), incorporating vision with emotion
analysis can enrich the attractiveness and correctness of video
descriptions. How to effectively integrate emotion analysis
into video captioning to generate more emotional language
sentences is critical in the field of video understanding but,
as far as we know, has not been well studied.

Preliminary works in image captioning have attempted to
subjectively describe the image content in a fixed language
style, such as positive or negative [10], humorous or romantic
[7], [11], etc. Besides, some efforts [6], [12] tried to engage
image captioning with emotional traits, such as optimistic,
anxious, dramatic, etc. However, these advances in image
captioning are still limited to a small number of pre-defined
emotions, which are not suitable to deal with complex and
diverse video content. In this work, we aim to tackle the
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Fig. 1. (a∼c): Visual emotion learning of video. (d): Psychology theory—-
Plutchik’s Wheel of Emotions [8], [9]. From this, the emotion vocabulary used
in this work includes 34 categories covering totally 179 nouns, adjectives, and
adverbs (affective words). In this study, we introduce emotion learning into
the captioning model, enabling more human-like descriptions.

challenging task of emotional video captioning and expect to
translate video content into more natural and open emotional
descriptions. Wang et al. [9] first contributed a video cap-
tioning dataset with emotion expression, named EmVidCap,
for this new task. Then they built two captioning modules,
factual part and emotional part, respectively, using the same
CNN+LSTM captioning architecture [13] to explore both the
factual and emotional information in videos, whose predictions
from the two parts are fused as the final output. Song et al. [14]
proposed a unified contextual attention network for emotional
video captioning, which applied visual and textual atten-
tion to capture critical contexts for captioning. Despite their
simplicity, the approaches in [9] and [14] do not explicitly
model the emotional state conveyed in videos, which easily
generate inaccurate emotional sentences due to the significant
imbalance between emotion words and common words.

To fill the research gap, we propose to model the visual
emotion explicitly by learning an emotion distribution over a
large emotion vocabulary before caption decoding in this work.
Intuitively, guided by the affective clue, more emotion-specific
words can be effectively predicted by the captioning model.
In particular, we develop a novel Vision-based Emotion Inter-
pretation Network (VEIN) for emotional video captioning.
As shown in Fig. 2, VEIN consists of a visual emotion
indicator, a visual-textual context aggregator, and a textual
description generator. It refers to three main stages: emotion
perceiving, video understanding, and video describing, respec-
tively.

For the emotion perceiving stage, psychologists have made
major successes in building psychological systems with both
basic and complex emotion states. For example, the famous
Plutchik’s Wheel [8] is widely applied in the community of
affective computing [15], [16]. Inspired by the psychological
study, we exploit the vocabulary of Plutchik’s Wheel as shown
in Fig. 1 (d) and perform emotion distribution learning over
this large and open psychology vocabulary as shown in Fig. 2.
To be specific, in our work, the top-K emotions with large
probabilities are selected as the highly responsive emotions,
e.g., happily and glad in Fig. 2, while we discard the irrelevant

Fig. 2. A novel Vision-based Emotion Interpretation Network (VEIN)
is proposed. VEIN comprises a visual emotion indicator, a visual-textual
context aggregator, and a description generator. The emotion indicator first
performs emotion distribution learning over a large vocabulary and encodes
the top-K words into a compound emotion vector eC. Then, guided by eC, the
visual-textual context aggregator explores visual, textual, and visual-textual
relevant contexts for captioning. For the task, VEIN is optimized with a basic
cross-entropy loss Lce , a new emotional indication loss Lcls , and a new
factual contrastive loss Lctr .

emotions with low probabilities, e.g., disgust and angry in
Fig. 2. Then, the word embeddings of top-K emotions are
aggregated based on their intensity weights into an emotion
representation vector eC. For the video understanding stage,
guided by the emotion vector eC, we develop an effective
visual-textual context aggregator to exploit the multimodal
context. It not only takes into consideration the visual context
and textual context (i.e., previously generated words), but
also explores the visual-textual contextual relevance to capture
the semantic alignment between the video and previously
generated words along the timeline. By this way, our proposed
VEIN can progressively and effectively understand the video
semantics and perceive the context. Finally, for the video
describing stage, we feed all these contexts into a language
decoder to predict the next word until the whole sentence is
generated.

In view of the significance of fact and emotion, we consider
both of them in a unified captioning optimization frame-
work. We enable an end-to-end optimization, including (1) a
widely-used cross-entropy loss Lce for generating natural and
objective captions, (2) an emotional indication loss Lcls that
enforces the consistency between the predicted emotion and
ground-truth emotion words in the generated caption, and (3)
a factual contrastive loss Lctr that enhances reliable facts by
correlating the visual-textual contextual relevance.

Our main contributions are summarized as follows:

• Inspired by the psychological study, we present a sim-
ple but effective solution to model the visual emotion
explicitly by learning an emotion distribution over a prior-
itized large vocabulary to instruct the caption generation.
Specifically, we learn an emotion representation vector
from the given video based on the top-K emotions with
high confidence.

• We develop an effective multimodal context learning
module to enhance emotional video captioning. Under
the guidance of the emotion cues, three types of contexts
(i.e. visual context, textual context, and visual-textual
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contextual relevance) are effectively incorporated into the
caption generator.

• Extensive experiments on public benchmark datasets with
emotion expressions, i.e., EmVidCap and EmVidCap-S,
clearly demonstrate the effectiveness of our proposed
method using various evaluation metrics. Quantitative and
qualitative analyses show that our method can effectively
capture the emotions in videos and thus generate emo-
tional sentences to interpret the video content.

The rest of the paper is organized as follows. We overview
the related work in Section II and elaborate the proposed
VEIN method in Section III. Extensive experiments including
quantitative comparison with state-of-the-art methods, ablation
study, and visualization analysis are presented in Section IV,
followed by a brief conclusion of this work in Section V.

II. RELATED WORK

In this section, we briefly review existing methods referring
to traditional video captioning, emotional video captioning,
and visual emotion analysis.

A. Traditional Video Captioning

Traditional video captioning aims to generate natural and
objective textual sentences for describing videos. Existing
efforts can be divided into two stages.

Early works developed the template-based approaches.
Researchers used some object or activity classifiers to detect
a set of visual concepts and filled these concepts into
the pre-defined language template of caption sentence [17],
[18]. For example, Krishnamoorthy et al. [19] developed an
approach to select the best subject-verb-object triplet as the
video caption. However, as a result, the diversity and flexibility
of sentences are limited to these predefined templates.

Subsequently, in nowadays stage, sequential learning mod-
els are more popular for video captioning. Sequential learning
models based on encoder-decoder structure have achieved
outstanding success in the field of neural machine translation
(NMT) [20]. Inspired by this, researchers introduced various
sequential learning based models to address video caption-
ing [13], [21]. Venugopalan et al. [22] used a pre-trained CNN
to extract the visual features, then pooled and fed the features
to an LSTM decoder for caption generation. However, the
pooling strategy ignored the temporal structure in the video.
Yao et al. [21] proposed a temporal attention mechanism to
summarize the visual feature sequence. Besides, some works
proposed to apply spatial attention to focus on different
visual regions during captioning. Zhao et al. [23] designed
an object-aware tube feature representation by attending on
salient objects. Chen and Jiang [24] performed a novel spatial
attention on stacked optical flow images with a customized
CNN. Later methods progressed by introducing semantic
attributes [25], [26] and joint modeling of visual content
with compositional text [27], [28]. Other efforts exploited
multi-modal information to improve the video captioning
performance, such as introducing the object [5], motion [29]
and audio [30] features. There are also some recent works
focusing on network architecture design, such as CNN [31],
Transformer [32], and memory network [33].

B. Emotional Video Captioning

Emotional video captioning is a new emerging task that is
still in its infancy. There are merely two work lines referring to
the semantic enhancement of caption with emotional factors.
The first research line is stylized captioning [10], [12], [34],
which aims to generate captions in a specified language style,
such as romance, pride, and shame. The second line is more
generally emotional video captioning [9], [14]. Our work
belongs to the latter.

For stylized captioning, Mathews et al. [10] first proposed a
switching RNN model to embed positive or negative sentiment
into the generated captions. To be specific, they used two paral-
lel RNNs [35] equipped with a gating mechanism to switch the
two RNNs for generating caption: one RNN was trained on a
large factual dataset and the other was trained on a small emo-
tional dataset. Chen et al. [7] proposed a style-factual LSTM
to incorporate two groups of dynamic attention parameters,
which adaptively adjusted the attention weights between the
fact and style-related parts in an LSTM. To generalize the
capability of captioning models, several methods leveraged
unpaired stylized corpus. For example, Gan et al. [11] pro-
posed a semi-supervised framework to leverage both standard
vision-caption factual pairs and unpaired stylized language
corpus (e.g. humorous and romantic sentences) for training and
fine-tuning model. Chen et al. [36] designed a domain layer
normalization (DLN) mechanism to disentangle the language
style from the factual or stylized sentences, which refers to
four language styles of fairy tale, romance, humor, and country
song lyrics. The aforementioned works handled a sentiment
style at once. A few recent works explored multiple but
limited and fixed number of styles simultaneously in a single
model [37], [38], [39]. In this work, we do not make effort
to imitate a specified language style but aim to generate more
general emotional descriptions by perceiving the emotion state
adaptively in the video.

For emotional captioning, Wang et al. [9] proposed the first
methodological solution. They trained two vanilla S2VTs [13]
on factual and emotional captioning datasets separately. The
output probabilities of the two S2VTs are summed to a final
probability for caption generation. Song et al. [14] focused on
extracting rich context from video and text to improve the
quality of emotional captions. They proposed a contextual
attention network that introduced a visual attention module and
a textual attention module into the LSTM decoder. However,
these methods did not do anything explicitly on emotion
learning.

In this article, we make efforts to mine the affective clues
by: 1) the well-designed video emotion distribution representa-
tion covering the open psychological emotion vocabulary, and
2) extracting emotion-guided contexts from visual, textual, and
joint visual-textual perspectives.

C. Visual Emotion Analysis

With the popularity of images or short videos on social
networks, the research of visual emotion analysis has attracted
more and more attention [40], [41]. Most of the cur-
rent work focuses on addressing it for the visual emotion

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on February 27,2024 at 07:55:52 UTC from IEEE Xplore.  Restrictions apply. 



SONG et al.: EMOTIONAL VIDEO CAPTIONING WITH VISION-BASED EMOTION INTERPRETATION NETWORK 1125

Fig. 3. An overview of the proposed VEIN. First, we learn an emotion distribution q and choose the top-K intensive emotions to integrate a emotion
vector eC. Then, guided by eC, we aggregate the contexts from video V, partially generated words y⩽t and their visual-textual correlation matrix Rt at
each timestamp t . These contexts are fed together into an LSTM-based language decoder (description generator) to produce the video description. Moreover,
we propose two new objectives for this task, i.e., imposing on the model with two constraints of emotion distribution q and visual-textual relevance Rt .

classification task [15], [42]. To bridge the affective gap,
researchers primarily disentangled discriminative features that
can better distinguish the difference among different emo-
tions. Rao et al. [41] disentangled the emotional clue from
image semantics, aesthetics, and low-level features simulta-
neously to predict the dominant emotion for each image.
Yang et al. [42] proposed a stimuli-aware model to recognize
emotion from specific stimuli clues, such as color, object,
and face. Kosti et al. [43] explored emotion recognition by
combining both the facial expression of the person and the
global scene in the whole image. In addition, under the
consideration of ambiguity and subjectivity of human emo-
tions, noteworthy efforts are devoted to the task of visual
emotion distribution learning instead of a single dominant
emotion prediction [44], [45]. Yang et al. [45] proposed a
well-grounded circular-structured representation to utilize the
prior knowledge of pure emotion theory for visual emotion
learning.

However, all the above-mentioned works focus on
image-based emotion analysis. Nowadays, few emotional
methods are developed on videos. For user-generated videos,
Zhao et al. [15] utilized spatiotemporal attention to weight
emotional-rich image regions and video segments for emo-
tion recognition. Yang et al. [46] considered human por-
traits to perform human-centered GIF emotion recognition.
Mittal et al. [47] developed a time-series perception model
that explores the audience’s emotions responsive to various
movie scenarios. In addition, various downstream tasks are
inspired by the visual emotion analysis, such as emotional
image retrieval [48], emotional video recommendation [49]
and dialogue tasks [50]. Motivated by these works, we propose
to address emotional video captioning by injecting emotion
learning into the captioning model.

III. PROPOSED APPROACH

Our goal is to generate a sentence to describe the given
video with emotional expression. As shown in Fig. 3, our
proposed VEIN consists of a visual emotion indicator (detailed
in Sec. III-A), a visual-textual context aggregator (detailed in
Sec. III-B), and a description decoder (detailed in Sec. III-C).

The main research questions are two: 1) how to accurately
capture the emotions conveyed in the videos (R1) and 2) how
to effectively model the multimodal context, i.e., visual con-
text, textual context, and visual-textual contextual relevance,
for better comprehension of the video (R2).

A. Visual Emotion Indicator

Inspired by the psychological study [8], we propose to learn
the emotional representation of the video that encodes the
human feelings carried in the video. The basic idea is that we
model the emotion distribution of the video over a carefully
constructed emotion vocabulary and then select the top-K
highly responsive emotions to compose an emotion vector eC.
As shown in Fig. 3, we select the happily and glad as the
relevant emotions and discard the angry and disgust emotions
with low confidence. We describe the details as follows.

We first represent the video as a sequence of frame-level
feature vectors V = {vi }

N
i=1 ∈RN×dv using pre-trained network

models, such as ResNet [51], ResNext [52], or CLIP [53],
where N is the number of the sampled frames and dv denotes
the dimension of feature vectors. The second step is to aggre-
gate frame-level features {vi }

N
i=1 into a compact video-level

representation vector vA for emotion analysis. For simplicity,
we use the aggregation scheme in NeXtVLAD [54]. Formally,
each frame-level vector vi in V is first expanded as v′

i ∈Rλdv

via a fully-connected layer, where λ is a width multiplier.
Next, we split the expanded vector v′

i into G groups of
lower-dimensional feature vectors v′′

ig ∈Rλdv/G . Then, each v′′

ig
is represented as a mixture of residuals from the anchor point
cm of cluster m. With G groups and M clusters, a compact
video descriptor [54] is achieved as follows:

vA
=

N∑
i=1

G∑
g=1

ωigm(v′′

ig − cm), (1)

where ωigm denotes the weight of i-th video frame vector
assigned to the m-th cluster in the g-th group. We set λ = 2,
G = 8, and λM = 4 in this work, and then vA

∈Rdv .
After we obtain the aggregated global video representation

vA, the next step is to reveal the emotion tendency of the

Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on February 27,2024 at 07:55:52 UTC from IEEE Xplore.  Restrictions apply. 



1126 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 33, 2024

TABLE I
EXAMPLE OF THE EMOTION VOCABULARY. WE DISPLAY A PART OF

EMOTION CATEGORIES WITH THE TOP 10 PROPORTIONS APPEARED
IN EMVIDCAP AND THE CORRESPONDING EMOTION WORDS

given video. Given the video representation vA, we predict
the probability distribution of emotion words q = (q1, · · · ,
q|V oc|)∈R|V oc| over an open emotion vocabulary, as follows:

qk = softmax(u⊤
q tanh(UqvA

+ Hqek + bq)), (2)

where uq ∈Rda , Uq ∈Rda×dv , Hq ∈Rda×dw , and bq ∈Rda are
learnable parameters, and ek ∈Rdw is the GloVe embedding of
the k-th emotion word in the emotion vocabulary, as shown
in Table I. With the emotion distribution q, we select the
top-K emotion words with large probability scores {qk}

K
k=1

to calculate a video emotion vector eC as shown in Eq. 3:

eC
=

∑K

k=1
qkek, (3)

where eC captures the main emotional clues in the video, thus
can guide the visual-textual context modeling. The emotion
words with low probability scores are usually discarded.
So far, we have answered the research question R1 in this
section. Note that we can also use other video aggregate
strategies in our visual emotion indicator module to obtain
the compact video descriptor. The NeXtVLAD [54] scheme is
just applied due to its simplicity and effectiveness.

B. Visual-Textual Context Aggregator

In this section, we introduce how to answer the research
question R2. It is critical in our work to effectively exploit
all relevant and informative contexts for each step of word
decoding. The basic idea is that we expect to feed the
emotional clue into the modeling of different contexts (i.e.,
visual, textual, and joint visual-textual contexts) to reach
emotion-aware representation and aggregation of contexts for
the task of emotional video captioning.

1) Visual Context: We aim to discover the emotional and
informative visual frames in the video for the modeling of
visual context. As shown in Fig. 3, the frames showing the
woman’s smiling face can contribute to the prediction of the
emotion happily. Based on such observation, we design an
attention mechanism to model the emotion-rich visual features.

As shown in Fig. 3, at the t-th decoding step, we modulate
the weights {αi t } of the frame-level features {vi } under the
guidance of hidden state ht−1 as follows:

αi t = softmax(u⊤
α tanh(Uαht−1 + Hαvi + bα)), (4)

where uα ∈Rda , Uα ∈Rda×dh , Hα ∈Rda×dv , and bα ∈Rda are
all learnable network parameters. Note that the initial hidden
state h0 is activated by the emotion vector eC by h0 = FC(eC),
which forces the model to pay more attention on the video
frames with emotion expression, thus playing a vital role in our
proposed VEIN. The FC(·) denotes a fully-connected layer.

Then, the video context representation ṽt ∈ Rdv at the t-th
decoding step can be obtained by aggregating the frame-level
feature vectors based on the weights {αi t } in Eq. 4. We deem
ṽt is an emotionally influenced context unit.

ṽt =

∑N

i=1
αi t vi . (5)

2) Textual Context: Here, we consider the contextual tran-
sition of previously generated words {y⩽t }. We extract the
textual features of {y⩽t } using GloVe embedding, and further
capture the sequential dependency among words using the
well-known self-attention [55], [56], [57] module. Formally,
the textual features of previous words are transformed into
W⩽t = {w j }

t
j=1 ∈ Rt×dw = 8([y1; · · · ; yt ]), where [; ] is a

row-wise stacking operator, and 8 denotes the self-attention
layer.

As the same to visual context ṽt , we perform the attention
mechanism on W⩽t to discover the emotion-aware textual
clue. At the t-th decoding step, we assign the weights {β j t } to
textual features {w j } under the guidance of hidden state ht−1,
and the textual features of previous words are aggregated as a
textual context vector ct ∈Rdw at the t-th decoding step: β j t = softmax(u⊤

β tanh(Uβht−1 + Hβw j + bβ)),

ct =

∑t−1

j=1
β j t w j ,

(6)

where uβ ∈ Rda , Uβ ∈ Rda×dh , Hβ ∈ Rda×dw , and bβ ∈ Rda

are learnable parameters. The initial hidden state h0 is also
activated by the emotion vector eC in the same way as Eq. 4.

3) Enhanced Visual-Textual Context: Apart from the above
contexts ṽt and ct , we also explore the frame-word rele-
vance for visual-textual context modeling at each timestamp.
In detail, given the partially generated sentence W⩽t and video
V, we calculate the relevance matrix Rt

= {r t
i j |i ⩽ N , j ⩽ t}∈

RN×t at the t-th step that captures the frame-word alignment
as follows:

r t
i j = u⊤

r tanh(Ur vi +Hr w j +br ), (7)

where ur ∈ Rda , Ur ∈ Rda×dv , Hr ∈ Rda×dw , and br ∈

Rda are learnable parameters. Based on the relevance matrix
Rt

∈ RN×t , we now can aggregate the word embeddings
of previously generated words to obtain a contextual feature
matrix W′

⩽t = {w′

i t }
N
i=1 ∈RN×dw :

W′

⩽t = softmax(Rt )W⩽t , (8)

where the operation softmax(·) denotes a row-wise softmax
operation. Note that both W⩽t ∈ Rt×dw and Rt

∈ RN×t
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are two variable-length matrices along the timeline. We then
can aggregate the contextual feature matrix W′

⩽t ∈ RN×dw

using the attention mechanism in Eq. 6 to obtain an enhanced
visual-textual context state vector c′

t ∈Rdw :{
θi t = softmax(u⊤

θ tanh(Uθ ht−1 + Hθ w′

i t + bθ )),

c′
t =

∑N

i=1
θi t w′

i t ,
(9)

where uθ ∈Rda , Uθ ∈Rda×dh , Hθ ∈Rda×dw , and bθ ∈Rda are
learnable parameters. The initial hidden state vector is also
activated by the emotion vector. Finally, we fuse the textual
context ct and the enhanced context c′

t as follow:

c̃t = (ct + c′
t ). (10)

C. Description Generator

So far, we have obtained the emotion indication vector eC,
visual context vector ṽt , and the fused textual context vector
c̃t at the t-th step. We adopt LSTM as the decoder to generate
the words by steps. As mentioned previously, we transform
eC as the initial hidden state h0 ∈Rdh of the decoder. It forces
the emotion vector eC to guide the description generation. For
example, if a video’s emotion is identified as sadness with
a large probability, the model inclines to describe the visual
content with a sad tone. At each time step, the previously
obtained context state vectors {̃vt , c̃t } and the previous word
yt are fed into the LSTM unit to predict the next word:{

h0 =FC(eC), t = 0;

ht =LSTM([̃vt , c̃t , yt ], ht−1), t ∈{1, . . . L}
(11)

where FC is a fully-connected layer, and L is the total length
of the to-be-generated sentence. Thus, the word probability
prediction that depends on vision V and emotion eC can be
formulated as follows:

p(yt+1|V, eC, y⩽t ) = softmax(FC(ht )). (12)

D. Optimization

In this work, we design the optimization objectives of the
emotional video captioning network from general, emotional,
and factual aspects. At first, we adopt a cross-entropy loss
Lce for general captioning training. Then, to generate both
emotional and factual descriptions, we design two specific
objectives: 1) an emotional indication loss Lcls in the emo-
tion encoding phase, which maximizes the probability of the
top-ranked candidate emotion words being the ground-truth
emotions, and 2) a factual contrastive loss Lctr in the context
aggregation phase, which aims to make the visual-textual
relevance matrix more distinctive in a weakly-supervised con-
trastive learning fashion.

1) Cross-Entropy Loss Lce: As a basic objective, we use
it to maximize the log-likelihood of each target word yt+1 as
follows [58], [59]:

Lce = −

∑
t
logp(yt+1|V, eC, y⩽t ). (13)

2) Emotional Indication Loss Lcls: We optimize the emo-
tion distribution q ∈ R|V oc| with the automatically obtained
emotion labels {egt }

E
gt=1, where {egt } is the intersection set of

ground-truth caption and the emotion vocabulary, and E is the
set size. To improve the accuracy of the emotion distribution,
we design an emotion indication loss Lcls as follows:

Lcls = −

∑E

gt
δ(egt )log(q)⊤, (14)

where δ(egt ) ∈ R|V oc| denotes a multi-hot vector, where the
value of 1 denotes the occurrence of ground-truth emotion
word and otherwise 0.

3) Factual Contrastive Loss Lctr : To generate semantic-
rich descriptions, in this work, we further enforce a novel
semantic constraint. Inspired by the idea of contrastive learn-
ing [60] that discriminates similar but different semantics
through the correlation of positive and negative instances,
we propose a contrastive loss Lctr to impose a contrastive
constraint on the relevance matrix Rt (the frame-word align-
ment of the video and partially generated sentence). The
whole process of Lctr is implemented in a weakly-supervised
learning fashion.

We sample positive and negative video-sentence pairs in
each training batch. For a video and its generated words
(V, W⩽t ), the relevance matrix Rt calculated by Eq. 7 is
considered as a positive instance. We also construct some
negative relevance matrices {R̃t

} based on randomly sampled
negative pairs (Ṽ, W⩽t ) or (V, W̃⩽t ). The contrastive loss
Lctr is formulated as:

Lctr =−

L∑
t=1

t∑
j=1

N∑
i=1

[logσ(r t
i j )+log(1−σ(r̃ t

i j ))], (15)

where σ(·) is sigmoid function and the objective Lctr encour-
ages high relevance scores in positive instances Rt and
penalizes the high relevance scores in negative instances R̃t

simultaneously.
Finally, the total optimized objective is formulated as:

L = λceLce + λclsLcls + λctrLctr , (16)

where λce, λcls and λctr are three hyperparameters to modulate
the contribution of the three losses.

IV. EXPERIMENT

A. Datasets

EmVidCap [9] is a public emotional video captioning
dataset, which includes two sub-datasets: EmVidCap-S and
EmVidCap-L. EmVidCap-S is a small dataset that con-
tains 374 videos originated from factual dataset MSVD [62].
Each video is labeled with roughly 40 emotional captions.
Following [9], the dataset is divided into 240/134 videos
and 8,169/4,611 sentences for training/testing, respectively.
EmVidCap-L contains 1,523 videos from VideoEmotion-8
(an emotion prediction dataset) [63]. Each video is anno-
tated around about 17 emotional captions. The dataset is
split into 1,141/382 videos and 19,398/6,527 sentences for
training/testing. The full EmVidCap dataset contains 27,567
captions and 1,381 videos for training, and 11,138 captions
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TABLE II
MAIN COMPARISON ON EMVIDCAP AND EMVIDCAP-S DATASETS. THE RESULTS AND CORRESPONDING FEATURES ARE LISTED

over 516 videos for testing. Following [9], we evaluate the
model on the EmVidCap and EmVidCap-S datasets. Compared
with EmVidCap-S, EmVidCap contains much longer videos
(average 23s vs. 10s per video) and more diverse annotations
(average 11 tokens vs. 7 tokens).

Furthermore, we also test our model on two well-known
datasets for traditional video captioning, MSVD [62] and
MSR-VTT [64]. MSVD contains 1,970 videos, in which
each video is 10∼25 seconds long and annotated with
roughly 40 English sentences. The MSVD is separated into
1,200 training, 100 validation, and 670 testing splits [13],
[21]. MSRVTT is composed of 10,000 videos. Each video
is described with 20 English captions. We use the official
splits [64], where 6,513 videos for training, 497 videos for
validation, and 2,990 videos for testing.

B. Evaluation Metrics

Common standard metrics are used to evaluate the generated
sentences [65], [66], i.e., BLEU-n, METEOR, ROUGE, and
CIDEr abbreviated to B-n, M, R, and C, respectively. Besides,
following the prior work [9], we introduce two emotion
metrics Accsw and Accc to measure the emotion accuracy at
word-level and sentence-level. More importantly, new hybrid
metrics BFS and CFS [9] that combine BLEU and CIDEr
with emotion metrics are given in Eq. 17. Since both factual
and emotional semantics benefit the descriptions, we pay more
attention to discuss BFS and CFS in this work.

B F S = k ·

4∑
n=1

πn ·BLEU-n+(1−k)(
Accsw + Accc

2
),

C F S = k ·CIDEr+(1−k)(
Accsw + Accc

2
),

(17)

where we set k = 0.8 and πn =
n
10 as in [9].

TABLE III
PERFORMANCE COMPARISON FOR TRADITIONAL VIDEO CAPTIONING ON

MSVD AND MSR-VTT DATASETS

C. Implementation Details

For each video, we sample 30 frames uniformly (N =

30) and set the feature dimension to 300 (dv = 300). For
the NeXtVLAD setting, we use eight groups and four clus-
ters (G = 8 and K = 4). About processing the sentence
annotations, we tokenize, lowercase and truncate them to
15 words. The word embedding is initialized using GloVe with
dw = 300 [81], [82] and the hidden size of LSTM is set to
dh = 512. We built two kinds of vocabulary: 1) one is the
common vocabulary that consists of words from training sets
of EmVidCap (EmVidCap-S) and MSVD as well as special
tokens <PAD>, <SOS>, <EOS>, and <UNK>; 2) the other
is the emotion vocabulary that is originated from [8] and [9].
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TABLE IV
PERFORMANCE COMPARISON FOR STYLIZED IMAGE CAPTIONING ON

SENTICAP DATASET [10]

Table I shows an example of the emotion vocabulary. There
are totally 14,038 (9,641) words in the common vocabulary
for EmVidCap (EmVidCap-S) and |V oc| = 179 emotions in
the emotion vocabulary.

We use PyTorch on NVIDIA GeForce RTX 2080 Ti GPU
for experiments. The model is trained by Adamax optimizer
with the learning rate 7×10−4 and the batch size is set to 200.
We set hyperparameters λce = 1, λctr = 1 and λcls = 0.2.
Following [9], the model is initialized on the factual dataset
MSVD with Lce. In the test stage, the beam-search with a
beam size of 5 is used for caption generation. Following
existing works [9], [14], we report the best results from a
single experiment for a fair comparison.

D. Comparison With State-of-the-Art Methods

1) Comparison on Emotional Video Captioning: There are
few works to explore the emotional video captioning task by
now. FT [9] and CANet [14] are the two existing methods for
this task. For comparison, we introduce two existing methods
in the field of general video captioning, i.e., SA [61] and SGN
[4]. SA is a classical video model and SGN is a brilliant
video model achieving SOTA performance. We also discuss
the representative pre-trained vision-transformer CLIP [53].
We apply CLIP to the model SA, resulting in a competitive
method denoted as CLIP+SA.

Table II shows the experimental results on EmVidCap and
EmVidCap-S datasets. The proposed VEIN achieves new state-
of-the-art performances on both datasets. It outperforms the
others by a large margin, especially on the emotion met-
rics. For example, compared to FT, the VEIN improves the
Accsw/Accc scores from 51.2/49.6 to 59.0/57.6 on EmVid-
Cap, and from 69.4/67.1 to 82.7/82.1 on EmVidCap-S. With
the same visual features R101+RN (ResNet-101 [51] and
3D-ResNet-101 [52]), VEIN achieves considerable improve-
ment of 6.7% and 7.9% on BFS and CFS compared to
CANet on EmVidCap, respectively. Although the combination
CLIP+SA gains remarkable improvements with the advanced

TABLE V
ABLATION STUDIES OF top-K EMOTIONS ON EMVIDCAP

Fig. 4. Comparison with the “w/o eC” that shields the information from
the predicted emotions, regarding (a) the frequency of the top-K predicted
emotion words that appear in the generated caption and (b) emotion metrics
on the EmVidCap dataset.

CLIP features, VEIN still performs the best with fair settings.
On the EmVidCap-S dataset, the CIDEr of CLIP+SA is
72.1, while the VEIN reports much higher results, 79.6. The
remarkable improvements demonstrate the effectiveness and
advantage of the emotion learning module.

2) Comparison on Factual Video Captioning: To validate
the generalization ability, we experiment on factual bench-
mark datasets MSVD [62] and MSR-VTT [64]. For a fair
comparison, we set the emotion vector to zeros, which
indicates no emotion learning. As shown in Table III, the
VEIN consistently achieves comparable performance to the
existing works. It is worth noting that on the MSVD dataset,
our method completely surpasses all the compared methods
except Swinbert [78], its advantage results from optimizing
large-scale parameters. Swinbert [78] trains a video backbone
(VidSwin) and a multimodal transformer in an end-to-end
manner. As shown in Table III, the size of our model is much
smaller than Swinbert [78], 2.7G vs 56.4M on MSR-VTT,
the difference is nearly 50 times. We have obvious advan-
tages in flexibility and lightweight. Nonetheless, our model
outperforms Swinbert [78] on all metrics on the MSR-VTT
dataset. VEIN exhibits its effectiveness under both emotional
and factual settings of video captioning.

3) Comparison on Stylized Image Captioning: We further
evaluate the model on an alternative emotion-related task,
i.e., stylized image captioning. Its goal is to generate cap-
tions with a desired sentiment (e.g., positive or negative).
We extend the method on the popular SentiCap [10] dataset
and compare existing methods. As shown in Table IV, our
method outperforms existing methods on both positive and
negative subsets, e.g., increasing the CIDEr reported by the
SOTA method ERG(VinVL) [6] by 3.5 and 12.8, respectively.
Our emotion-guided decoding framework effectively provides
emotion-related contexts for emotional captioning.
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TABLE VI
ABLATION STUDIES OF VISUAL, TEXTUAL, AND THE ENHANCED

VISUAL-TEXTUAL CONTEXTS ON EMVIDCAP

TABLE VII
ABLATION STUDIES OF DIFFERENT LOSSES ON EMVIDCAP

E. Ablation Study

1) Model Test of VEIN: To analyze the proposed method
deeply, we conduct various ablation studies on the EmVid-
Cap dataset, referring to testing top-K emotions (Table V),
different contexts (Table VI) and loss functions (Table VII).

a) Effect of top-K emotions: As shown in Table V,
we test the effect of top-K emotions with different choices
of K ∈ {0, 1, 5, 20, All}. When K = 0, we remove eC from
the model and initialize h0 with zeros. We can observe from
Table V that K = 0 performs the worst. The scores of
Accsw/Accc drop from 58.1/57.90 to 54.9/53.5. It indicates
that introducing the emotion vector eC into the caption model
can effectively promote the emotional style of the description
sentences. We also observe that the model reaches the highest
scores at K = 5 with BFS of 41.4 and CFS of 41.2, respec-
tively. When K = 1, the small emotion coverage may not be
enough to guide diverse attempts of captioning process; when
K = 20 or All, the emotion vector would be less informative
due to the noisy emotional cue.

Besides, Figure 4 shows the frequency of the top-K pre-
dicted emotion words that appear in the generated caption.
The comparison model “w/o eC ” shields the information from
the predicted emotions. It can be found that the model with
emotion guidance effectively promotes both emotion inclusion
and emotion accuracy.

b) Effect of context modeling: Here, we test the effect of
various contexts—visual (ṽt ), textual (ct ), and the enhanced
visual-textual (c′

t ) contexts. From Table VI, “w/o V -Clue”,
“w/o T -Clue”, “w/o V T -Clue”, and “w/o T &V T -Clue”
denote removing ṽt , ct , c′

t , and (ct + c′
t ) from the proposed

VEIN, respectively. In “w/o V -Clue”, we use the averagely
pooled visual feature v̄=

1
N

∑N
i=1 vi to replace ṽt . v̄ performs

much worse than ṽt . Observing Accsw and Accc, the tex-
tual context T -Clue brings higher improvement of emotion
accuracy than V -Clue or V T -Clue. The removal of T &V T -
Clue (totally removing the textual influence) leads to the worst
performance. To summarize, as shown in Table VI, removing
either context degrades the performance on all the metrics.

TABLE VIII
ABLATION STUDIES OF ALTERNATIVE MODULES ON EMVIDCAP

TABLE IX
COMPARISON OF DIFFERENT DECODING STRATEGIES ON EMVIDCAP

c) Effect of different losses: In our wrok, Lce is the basic
cross-entropy loss. We test the model by adding Lctr and
Lcls step by step. As shown in Table VII, combining either
Lcls or Lctr with Lce, the performance rises with respect
to all the metrics. Among them, the effect of introducing
Lcls is more obvious. Lcls is crucial to ensure the reliability
of emotion guidance during captioning. The best result is
achieved with the combination of all three losses. It validates
that the emotion-fact coordinated optimization significantly
boosts the experimental performances.

2) Discussion on Alternative Module Implementations:
Here, we explore some alternative implementations of our
model. All the ablation studies are conducted on EmVidCap
dataset and results are shown in Table VIII. Significantly,
the results of these alternative implementations shown in
Table VIII are still superior to existing approaches [4], [9].

a) Visual feature aggregation of video: In the emo-
tion indicator stage, we use NeXtVLAD [54] to tackle the
feature aggregation of video. There are some alternative imple-
mentations, such as mean pooling [27], attention [61], and
LSTM [13]. As shown in Table VIII, NeXtVLAD performs
the best. It can effectively aggregate the feature sequence from
a global view of video by multiple times.

b) GloVe vs. bert textual features: In our original setting,
we use the GloVe embedding. As shown in Table VIII, ours
(VEIN with GloVe) performs better than that with BERT. The
reason is that considering the training cost, the BERT is a
large pre-trained model and we freeze the pre-trained BERT
parameters in experiments. In contrast, when using GloVe,
we jointly train it with the VEIN architecture.

c) Visual-textual correlation: As shown in Table VIII,
“Cross-Rt ” denotes the model that adopts a cross-attention
mechanism [84] instead of additive attention to calculate Rt .
Its performance is comparable but slightly inferior to the VEIN
with additive attention.

d) BS vs CBS decoding strategy: In the inference stage,
we use the beam search (BS) [61] with a beam size of
5 for caption generation. Here, we adopt the constrained
beam search (CBS) [85] instead to encourage the inclusion
of predicted emotion in the generated caption. We consider
the top-1 predicted emotion word as a constraint, which is
additionally added to the beam at each decoding time step.
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Fig. 5. Illustrations of aggregation weights {ωigm } in NeXtVLAD (a) and emotion distribution prediction (b). The proposed VEIN attends discriminative
frames with obvious emotion intention and filters out irrelevant backgrounds.

Fig. 6. Embedding distance-based evaluation on video and its caption sentences.

As shown in Table IX, the CBS decoding strategy improves
Accsw and Accc by 0.6 and 0.5, respectively. However, the
semantic metrics drop slightly. This may be due to the forced
production of emotion words during decoding, which will
affect the fluency of sentences.

F. Qualitative Analysis

1) Visualization of Video Aggregation: In Section III-A,
we use NeXtVLAD [54] to obtain a video-level descriptor for
emotion distribution learning. To display the interpretability
of feature aggregation, we show a video instance in Fig. 5,
which expresses emotion surprise in the video except for
the first and fifth background frames. There are three highly
attentive regions, such as {g = 2, m = 4}, {g = 6, m = 1}

and {g = 8, m = 4} in the NeXtVLAD attention map. The
two former attentive regions pay more attention to the 2∼4-th
frames, while the last region attends to the 6∼8-th frames.
We also provide the emotion distribution in Fig. 5 (b), the
target emotion surprised displays the highest score of 42.3%.

2) Visualization of Video-Caption Distance: Shi et al.
pointed out that embedding distance-based evaluation between
cross-modal data is effective and can be considered as a
supplement to human judgment [86]. The evaluation of video
({vi }, i∈{1, · · · , N }) and caption ȳ is formulated as follows:

Sim(vi , ȳ) =
vi · ȳ

||vi ||2 × ||ȳ||2
(18)

where vi denotes the i-th visual feature of video and ȳ is the
mean pooling of all the word embeddings in the caption.

Figure 6 illustrates two examples to show the video-caption
distance based on embedding distance evaluation. Obviously,

the VEIN is consistent with the ground-truth (GT). Both
the similarity scores of VEIN and GT are relatively high
at emotion-specific frames and low at emotionless ones. For
example, at the 19∼30-th frames in Fig. 6 (a), the score of
VEIN coincides with the GT. The VEIN can interpret visual
emotions well.

3) Visualization of Emotion Indication: We visualize the
predicted emotion distribution over the large emotion vocab-
ulary and list the Top-5 ones in Fig. 7. “w/o Lcls” is
incapable of emotion recognition, namely in the case that all
the emotions are set with the same intensity to the video; in
other words, there is no emotion preference learning before
the captioning process. By comparison, VEIN responses to
the relevant emotions with strong intensities. For example
in Fig. 7, VEIN predicts surprise/surprised (29%/22%) for
videos (a) and happily/joyfully (16%/10%) for video (b),
respectively. Experiment facts demonstrate that the emotion
clue is intuitively helpful in generating emotional descriptions.

4) Visualization of Visual-Textual Relevance: Taking video
(a) in Fig. 7 as an example, we display the relevance matrix
Rt along the timeline t and the gradually generated sentence
in Fig. 8. Rt is a changeable variable. We have two observa-
tions. 1) At each step, the relevance matrix shows that the
previously generated words, especially emotion words, are
useful to predict the next word. 2) At the 5-th step in this
example, the relevance between the video and emotion word
surprised attends the frames with more emotion clues than
other ones (such as background frames). These observations
show effective emotional and factual semantics propagation in
term of visual-textual correlation.
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Fig. 7. Visualization results. Underline indicates the emotion words in ground-truth. Red fonts indicate the error generations. VEIN accurately identifies the
emotion and generates promising emotional descriptions.

Fig. 8. An example of visual-textual relevance matrix Rt along timeline.
Orange color marks relevance magnitude.

Fig. 9. Two failure cases. bored or disgusted are annotated from the sound
source of the video rather than visual content.

5) Visualization of Generated Captions: By observing
Fig. 7 again, the bottom row visualizes the caption sentences
generated by CLIP+SA, “w/o Lcls”, VEIN, and the ground-

truth (GT). The VEIN performs better in understanding the
video within both factual and emotional modes than the other
approaches. Others fail by generating some emotional errors
or irrelevant visual descriptions. In example (c), CLIP+SA
and “w/o Lcls” predict a wrong emotion great joy with the
crowd fact dance; our VEIN describes the accurate emotion
surprised of the woman who “saw her boyfriend proposed to
her”. Our superiority may be attributed to the novel design of
VEIN by exploiting the visual emotion distribution (affective
clue) in the captioning model. Example (d) shows a confusing
video, at first, the model predicts two different emotions
happily and cute with similar probabilities of 14% and 13%.
However, why does the VEIN finally output cute (the 2nd-
rank emotion) rather than happily (the 1st-rank emotion)? The
factual contrastive loss Lctr and CE loss Lce restrict the model
to generate factual description. Note that both cute and happily
do not appear in the GT label and there is an indeed cute cat.

Furthermore, Fig. 9 shows two failure cases. Their
ground-truth emotion labels are annotated from the audio
source rather than video, such as talks funnily in Fig. 9 (a)
and a woman is laughing at him in Fig. 9 (b). Our method
merely handles the vision without audio. If only considering
the visual appearance, the prediction of the VEIN seems to be
reasonable. The joint audio-visual emotion will be our future
research direction.

V. CONCLUSION

In this paper, we propose a novel Vision-based Emo-
tion Interpretation Network (VEIN) for emotional video
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description. It considers both emotion and fact two aspects.
We perform an emotion distribution learning over a large
emotion vocabulary to capture the emotion cue in the video.
Guided by the emotion cue, we explore different types of
contexts (i.e. visual, textual, and enhanced visual-textual con-
texts) to boost video understanding and multimodal context
modeling. Moreover, two new losses for this task—emotional
indication loss and factual contrastive loss, are introduced to
enhance the optimization of our method. Experimental and
visualization results have clearly demonstrated the superiority
of our proposed method.
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