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Abstract This chapter covers several research works on sign language recognition
(SLR), including isolated word recognition and continuous sentence translation.
To solve isolated SLR, an Adaptive-HMM (hidden Markov model) framework
(Guo et al., TOMCCAP 14(1):1–18, 2017) is proposed. The method explores the
intrinsic properties and complementary relationship among different modalities.
Continuous sentence sign translation (SLT) suffers from sequential variations of
visual representations without any word alignment clue. To exploit spatiotemporal
clues for identifying signs, a hierarchical recurrent neural network (RNN) is adopted
to encode visual contents at different visual granularities (Guo et al., AAAI, pp
6845–6852, 2018; Guo et al., ACM TIP 29:1575–1590, 2020). In the encoding
stage, key segments in the temporal stream are adaptively captured. Not only RNNs
are used for sequential learning; convolutional neural networks (CNNs) can be
used (Wang et al., ACM MM, pp 1483–1491, 2018). The proposed DenseTCN
model encodes temporal cues of continuous gestures by using CNN operations
(Guo et al., IJCAI, pp 744–750, 2019). As SLT is a weakly supervised task, due
to the gesture variation without word alignment annotation, the pseudo-supervised
learning mechanism contributes to solving the word alignment issue (Guo et al.,
IJCAI, pp 751–757, 2019).
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1 Online Early-Late Fusion Based on Adaptive HMM for
Sign Language Recognition

1.1 Introduction

For sign language recognition (SLR) based on multi-modal data, a sign word can be
represented by various features with existing complementary relationships among
them. To investigate these complementary relationships, we present an online
early-late fusion model based on an adaptive hidden Markov model (HMM) [8].
Inherent latent patterns of signs are not only associated to key gestures and body
poses, but also related to the relationships among them. The proposed adaptive-
HMM is designed to acquire the hidden state number of each sign through affinity
propagation clustering. For complementary learning, we suggest an online early-
late fusion scheme. The early fusion (feature fusion) is used to exploit the joint
feature learning to achieve higher complementary scores while the late fusion (score
fusion) uncovers and aggregates various scores in a weighting paradigm. This
fusion is query-adaptive. Experiments verify viability on signer-independent SLR
tasks with a large vocabulary. The proposed adaptive-HMM demonstrates consistent
robustness in terms of performance on different dataset sizes and SLR models.

In this section, the remarkable GMM (Gaussian mixture model)-HMM model is
chosen as a basic framework to tackle the isolated SLR problem. Given N signs’
training data, each sign n has its own HMM λn(1 ≤ n ≤ N), thus we have N signs’
HMMs: {λ1, λ2, . . . , λN }. We use the public toolkit1 to learn {λn}. The recognition
process is implemented using the Viterbi algorithm, and the most likely sign class
λ∗ of observation sequence O is found by Eq. 1.

λ∗ = argmax
{λ1,λ2,...,λn,...,λN }

P(λn|O). (1)

where P(λn|O), learned by the model λn(n = 1, . . . , N), indicates the relevance
probability of query O related to the n-th sign. To be specific, HMM-states
adaptation and early-late fusion are elaborated in Sects. 1.2 and 1.3.

1.2 Adaptive HMMs

The HMM model is sensitive to its inherent latent states. To obtain a superior
sign recognizer, we attempt to learn appropriate latent states for each sign word.
Here, we propose HMM-state adaptation to decide the individual state number
Qn(1 ≤ n ≤ N) for each sign model. Before learning the HMM λn, we split all

1HMM package: http://www.cs.ubc.ca/~murphyk/Software/HMM/hmm/html. Parameters Q and
M are discussed, whereas A, B and π can be handled by this code package.

http://www.cs.ubc.ca/~murphyk/Software/HMM/hmm/html
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the data samples of sign n into reasonable clusters and ensure an appropriate sort
number for gesture variation. We adopt affinity propagation (AP) clustering [6] to
adaptively acquire the centroid number of the training data. For sign n, we embed
the distance measurement in the AP approach to build a frame-similarity net. The
net is used to calculate the mutual responsibility and accessibility log-probability
ratios between any two frames fi and fj . We explore the similarity function in AP
to iteratively locate the best frame as exemplar fk , which has larger responsibility
weight than all other frames, until no more new exemplars appear. Thus, these best
exemplars {fk} are taken as the centroid and we can naturally obtain the centroid
number kn (Fig. 1).

Fig. 1 Cluster convergence on SP (skeleton pair) feature with similarity computation, where
“fitness” is a metric [6]. While fitness is closer to 0, clustering convergence is vastly improved.
(a) Sign “people”. (b) Sign “I”
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Algorithm 1 Early-late fusion based on adaptive GMM−HMM (adaptive-HMM)
Require: N signs’ training sample sets; Query O

Ensure: the sign class of query O

Training:
1: for sign n(1 ≤ n ≤ N) under feature i(1 ≤ i ≤ m) do
2: Extract feature set F

(i)
n from sign n’s training set SetOn;

3: Compute the number of clusters k
(i)
n on F

(i)
n by AP clustering;2

4: Q
(i)
n = k

(i)
n /M;

5: Learn the GMM-HMM model λ
(i)
n = (A,B, π) with SetOn and Q

(i)
n ;

6: end for
Testing:

7: Feature selection: e.g. remove “bad" HOG feature in the work;
8: Obtain O’s remaining m′ score lists {s(i)

O } by SLR models {λ(i)
n } ;

9: Calculate the fused score list s∗
O by Eq. 2∼ Eq. 5;

10: n∗ = arg max
n∗∈N

s∗
O ;

In the Adaptive-HMM, M denotes the cluster number of data distribution in
the GMM stage and Q represents the number of latent states in the HMM stage.
Classical SLR methods set M as a constant value, and typically set M = 3; we
follow this usage. We take the hidden state number Qn(1 ≤ n ≤ N) as a to-be-
learned factor, which reflects the characterization of key gestures. With a fixed
M-component in the GMM stage of the model, the state number Qn is set to be
proportional to the number of clusters kn, where kn demonstrates the number of
centroids of the gesture sample sequence. The proposed Adaptive-HMM is shown
in step 1 ∼ 5 of Algorithm 1.

1.3 Early-Late Fusion

The adaptive-HMM can be applied to model the hidden states of each sign under
multi-modalities, e.g., RGB images and skeletal coordinate data that are discussed
in this subsection. We then discuss the complementarity of different HMM models
under various feature types through the exploitation of early fusion and late fusion.
The early fusion is straightforwardly implemented by concatenating various features
into a combined feature as elaborated in Sect. 1.4.1. To explore the score fusion, we
build the score list (a score vector) of query O within each feature type (including
the combined feature). For multiple feature types F (i)(i = 1, . . . , m), we obtain the
score list set of query O by N signs’ adaptive HMMs {λ(i)

1 , λ
(i)
2 , . . . , λ

(i)
N } in Eq. 2:

s
(i)
O = [P(λ

(i)
1 |O), P (λ

(i)
2 |O), . . . , P (λ

(i)
N |O)] (2)

2As in [6], here we set similarity preference to media similarity in AP.
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where P(λ
(i)
n |O) represents the relevance of query O related to the n-th sign within

feature F (i), (n = 1, . . . , N); it is derived from the Viterbi algorithm on λ
(i)
n . Thus,

we obtain score lists {s(1)
O , s

(2)
O , . . . , s

(m)
O } of query O under m feature types.

1.3.1 Feature Selection

Given that a “bad” feature can pull down the overall fusion performance, we propose
a feature selection paradigm; namely, if the performance of a combined feature is
superior to its single component, we abandon the “bad” component feature whose
performance is worse than the combined feature. Therefore, the complementary
relationship in the combined feature is maintained while filtering the redundant,
“bad” information. We take the average variance of score lists on the training data
as the feature selection criterion. Given a score list (a score vector), its variance
means the deviation degree from its own mean value. A smaller variance means
that different signs have similar scores in the list, and thus, cannot be distinguished.
In contrast, a larger variance represents good discrimination power. As illustrated
in Fig. 2, we build a LOO (leave-one-out) cross-validation experiment on a partial
small size dataset: the 50-sign CSL dataset. Under various features, variances and
average variances of score lists of a total of 1000 training samples are separately
illustrated in Fig. 2a and b. The performance of variance on the feature HOG of
RGB images is not as good compared to the combined feature SP (skeletal pair
coordinate)-HOG. Thus, we eliminate HOG, and select SP and SP-HOG as to-be-
fused features.
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Fig. 2 Variance curves and average variances of score lists of the training samples under different
features. Feature SP is superior, followed by SP-HOG and HOG. (a) Variance comparison with an
arranged sample order sorted on the SP feature. (b) Average variance
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1.3.2 Query-Adaptive Weighting

After feature selection, we weight the remaining m′ score lists {s(i)
O }. The fusion

weight is inversely relative to the area of normalized sorted score curve. This is
because a better s

(i)
O is assigned a larger weight, while having a higher score on

the right word label, and a much lower score on other irrelevant labels. In other
words, if the arranged score list has a much sharper curve, the score list with its
feature is much more discriminative and helpful. To be more explicit, we sort s

(i)
O in

decreasing order and apply min-max normalization. We denote it as s
′(i)
O and weight

on s
′(i)
O (1 ≤ i ≤ m′) as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

s
′(i)
O = s

′(i)
O − mins

′(i)
O

maxs
′(i)
O − mins

′(i)
O

w
(i)
O =

1/A
s
′(i)
O∑

1≤i≤n

1/A
s
′(i)
O

(3)

where A
s
′(i)
O

denotes the curve area of the i-th score list s
′(i)
O under feature F (i)(1 ≤

i ≤ m′). It represents that the weighting paradigm is conditioned on s
′(i)
O , i.e., the

query Q itself. The weighting stage is query-adaptive and unsupervised.

1.3.3 Score Fusion

We then fuse m′ score lists. The product rule typically results in better performance
than other rules in biometric multi-modality fusion [15, 35]. The fusion formula is
shown in Eq. 4 and a deformation in Eq. 5. Using the publicly available MATLAB
package in footnote 1, we directly implement Eq. 5 in a sum format.

s∗
O =

[
n∏

i=1

(s
′(i)
O )w

(i)
O

]

, s.t.
n∑

i=1
w

(i)
O = 1 (4)

s∗
O =

[
n∑

i=1

w
(i)
O · log(s

′(i)
O )

]

, s.t.
n∑

i=1
w

(i)
O = 1 (5)

The predicted sign class of query O corresponds to the maximum value in s∗
O .

n∗ = arg max
n∗∈N

s∗
O = arg max

n∗∈N

[s∗
O,n] (6)
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Table 1 The details of 370-sign CSL dataset

Signs Dataset Signer number Repetition time Sample number

370 Training 4 5 20 × 370

Testing 1 5 5 × 370

where s∗
O denotes an N -dim classification vector. Its n∗-th component s∗

O,n repre-

sents the probability of query O related to the n∗-th sign under feature F (i).

1.4 Experiments

1.4.1 Experiments Setup

Dataset We conducted experiments on the CSL (Chinese sign language) dataset,
which is an RGB-D dataset collected using a Kinect sensor [30]. As shown in
Table 1, the dataset consists of 370 signs performed 5 times by 5 signers including
both men and women. The heights and gesture habits of signers are completely
different. To guarantee the signer-independent test, we use the leave-one-out (LOO)
cross-validation strategy to test SLR models in the experiments.

Feature Extraction This RGB-D SLR dataset contains color (RGB images) and
depth (skeletal coordinates) modalities. We aim to learn the complementarity of
these two modalities. In this work, we take the skeleton pair feature (D: 10-
dimensional SP feature), hand feature (RGB: 51-dimensional HOG feature by PCA
dimensionality reduction) and SP-HOG (RGB-D: 61-dimensional fused feature) as
the basic features for each sign word.

• Hand-crafted feature (RGB images): The HOG feature FHOG is derived from
the area of the two hands in the images by using an adaptive skin model and
depth constraint as in [30].3 Due to the high dimensionality of the original HOG
feature, Principal Component Analysis (PCA) is adopted. We hold about 80% of
the information energy of the dataset through PCA and obtain the 51-dimensional
HOG feature. The PCA transformation matrix is acquired on the training data,
and applied to the test samples.

• Skeleton pair feature (Depth Data): For depth data, we first extract mutual
distances of five skeleton points (head, left elbow, right elbow, left hand, and
right hand), then convert them to a 10-dimensional SP distance feature FSP [29].
Every signer has a different body shape. In order to unify the gesture postures of
different signers, we normalize each SP vector by its maximum value. We then

3In this work, HOG features were extracted through OpenCV with basic parameters [30] and
further optimized, e.g., some invalid frames are deleted.
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obtain the SP feature sequence FSP of each sign video sample. The characteristic
of SP features is invariant to rotation, scaling, and translation.

• Combined feature (RGB-D Data): We concatenate the FHOG and FSP features
to create the SP-HOG feature (61-dimensional combined feature). The SP-HOG
feature is considered to be early (feature) fusion.

Data Augmentation on Feature SP In the following experiments, we enhance
our restricted training data with data augmentation [3]. To avoid overfitting,
we investigate random Gaussian perturbation on the skeleton coordinates to
enrich additional gesture positions. Given the 3D-depth skeleton point (x, y, z)

extracted by the Kinect sensor, we take the coordinate x as an example to
clarify Gaussian disturbance, and both y and z coordinates are tackled similarly.
First, we calculate the range of x in all training samples within each sign n:
[xn

max , xn
min]. Let �xn = xn

max − xn
min. Then, we set a Gaussian random variable

X ∼ N(0, (η�xn)2), where η is the disturbance parameter. We set the empirical
parameter to η = 0.01. Under sign n, an additional combination of (x′, y′, z′)
coordinates of the skeleton point is generated, as shown below. By implementing
data augmentation once, the original dataset is expanded to twice the original size.

⎧
⎪⎪⎨

⎪⎪⎩

x′ = x + N(0, (η�xn)2)

y′ = y + N(0, (η�yn)2)

z′ = z + N(0, (η�zn)2)

(7)

Compared Approaches We compare the proposed approach with other SLR meth-
ods, e.g., DTW [2, 25], GMM-HMM (HMMs) and Light-HMM [30]. In addition,
we also compare the early-later fusion strategy with other fusion approaches, for
example, early fusion for SLR [30] and late fusion [35].

• GMM-HMM [30]: For the classical GMM-HMM, a better parameter setting is
Q = M = 3, where Q denotes the number of states in the HMM and M denotes
the number of mixture models in the GMM.

• Light-HMM [30]: In order to trade off accuracy and run time, the Light-HMM
determines key frames and chooses Q adaptively. Here M = 3 and Q is adaptive.
In order to acquire excellent performance, we set Light-HMM’s threshold ε0 to
0.001 and threshold λ to the average value of the RSS score curve of parameter ε.

• DTW [2, 25]: Different from HMM calculating the probability score of query
O under each sign class, DTW searches its nearest neighbor among the entire
training samples and regards the sign class of the nearest neighbor as its class. In
the late fusion testing of this work, the DTW score list is set as the reciprocal of
the distances from all training samples.
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1.4.2 Experiment with HMM-States Adaptation

We evaluate the Adaptive-HMM. The adaptation is set to HMM(Q) with adaptive Q

and M = 3. We also evaluate adaptation HMM(M), in which M is adaptive and Q =
3. As shown in Table 2, compared with various HMMs, DTW is significantly more
time-consuming as it compares all training samples to the to-be-identified sample,
while the HMM merely learns the hidden states. Light-HMM performs worse
than Adaptive-HMM due to dropping a few key frames. In the proposed adaptive
HMM, the parameter Q has considerably more influence than M . Q indicates
status changes, while M simulates data distribution. Due to rare samples and chaos
characteristic of Gaussian simulation, the impact of M is not exceptionally clear
on the CSL SLR dataset. Thus, we adopt the Adaptive-HMM(Q) as our adaptation
paradigm.

1.4.3 Comparison on Different Fusion Steps

Table 3 lists different fusion strategies. In Table 4, under Recall@R=1, the
precision with the SP feature is 34.82% and HOG feature just reaches 21.52%.
The performance of Fusion I (early fusion) is lower than that of a single SP feature;
HOG features have a negative influence. Both Fusion II, Fusion III and our early-late
fusion acquire obvious improvements. These fusions, involving late (score) fusion,
have learned the positive effect of complementary features. As shown in Fig. 3, the
performance of Fusion II and Fusion III are close, but our fusion performance is
superior. Compared with Fusion II and Fusion III, our fusion further reduces the
negative impact of “bad” single feature HOG.

Table 2 Performance comparison with the single SP feature

Methods Top 1 Top 5 Top 10 Testing time (ms/sign)

DTW 0.3159 0.5284 0.6245 1730

GMM-HMM 0.2751 0.5384 0.6583 159

LightHMM 0.2196 0.4529 0.6322 128

Adaptive-HMM (M) 0.2810 0.5404 0.6662 82

Adaptive-HMM (Q) 0.3482 0.6129 0.7080 88

Table 3 Setting details of different fusion strategies

Fusion I Fusion II Fusion III Early-late fusion

Early fusion Late fusion Early-late fusion Feature selection + Early-late fusion

SP-HOG SP ⊗ HOG SP ⊗ HOG ⊗ SP-HOG SP ⊗ SP-HOG

Feature fusion Score fusion (feature + score) fusion (feature + score) fusion
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Table 4 Performance
comparison with different
fusion types

Recall@R

Feature R = 1 R = 3 R = 5

SP 0.3482 0.5326 0.6129

HOG 0.2152 0.3403 0.3989

Fusion I [30] 0.3202 0.4571 0.5192

Fusion II [35] 0.4121 0.5627 0.6275

Fusion III 0.4140 0.5674 0.6299

Early-late fusion 0.4532 0.6075 0.6734

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
R

0.3

0.4

0.5

0.6

0.7

0.8

Our fusion
Fusion III
Fusion II
Fusion I

Fig. 3 Recall@R on the 370-sign CSL dataset

1.4.4 Comparison on Different Dataset Sizes

In this section, we test the Adaptive-HMM with different dataset sizes. We sample
several of 370 sign words as subsets (e.g., the top 50, 100, and 200 words). As
illustrated in Fig. 4a, with the increase of Recall@R, the precision improves; when
the number of sign word increases, the performance drops. The differences between
our fusion and other fusions are shown in Fig. 4b. Our fusion has obviously better
precision and stability.

1.4.5 Comparison on Different SLR Models

As shown in Tables 5 and 6, the HOG feature achieves poor performance, and DTW
still performs with the worst precision. Due to HOG delivering poor performance,
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Fig. 4 (a) Precision comparison of our fusion with different dataset sizes. (b) Precision differences
of our fusion to Fusions I, II and III at Recall@R=1

the performance of Fusion I (early fusion) on the 50-sign dataset is very poor.
What is interesting is that Fusion II (late fusion) effectively utilizes HOG. Our
fusion further improves the accuracy. To summarize, our method provides the
best performance by exploiting the advantages of early and late fusion as well as
complementarity. The time costs of different SLR models are shown in Table 7.
Compared with other HMMs, DTW takes much more time. The time costs of
various HMMs are close to each other. GMM-HMM has a stable time cost when Q

is fixed with 3. Under a few key frames, the time cost of Light-HMM is higher than
GMM-HMM, as its average adaptive Q is nearly 4 ∼ 5 times of GMM-HMM’s Q.
Compared with GMM-HMM, it has a higher computational complexity of adaptive
state transitions, so the Adaptive-HMM also has a variable Q. In any case, the
score fusion time is insignificant compared with the query time under different SLR
models. Fusion computation is effective for online fusion.

2 Hierarchical LSTM for Sign Language Translation

2.1 Introduction

Sign Language sentence Translation (SLT) is challenging due to the specific lin-
guistics under continuously changing gestures. To address this issue, a hierarchical
LSTM (HLSTM) based encoder-decoder model is proposed [12]. It tackles different
visual clues of frames, clips, and sub-sign units. As shown in Fig. 5, firstly, a
3D CNN is used to learn the temporal and spatial clues of video clips, and then
the online adaptive variable length key clip mining method is used to pack sub-
sign units. Afterward, we realize a temporal attention mechanism to balance the
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Table 7 Time comparison on 50 signs. Fusion time in this table merely indicates time of fusion
computation

Avg. testing time (s) DTW GMM-HMM Light-HMM Our adaptive HMM

SP 1.730 0.088 0.128 0.159

HOG 8.495 0.123 0.399 0.179

Fusion I 9.025 0.124 0.217 0.156

Fusion II 0.014 0.011 0.011 0.011
Fusion III 0.015 0.011 0.011 0.011
Our fusion 0.014 0.011 0.011 0.011

Fig. 5 The overall
framework of HLSTM

relationship among sub-sign locations. Finally, two LSTM layers are used to recurse
sub-sign semantics. After condensing the original visual features extracted by the
3D CNN and top LSTM layer, the bottom two LSTM layers have less computational
complexity.

2.2 Online Key Clip Mining

Discriminative motion patterns sparsely occur throughout video, such as sign speed,
habits of signers, and special characteristics of sign words. In this work, we attempt
to automatically obtain the variable-length key clips, rather than fixed interval for
key frames or volumes segmentation [31, 36]. We employ a low-rank approximation
method [30] to calculate the linear correlation of the frame sequence, which is
implemented by calculating the residual sum of square (RSS) of feature ε between
the previous frame and the current frame.

Given feature sequence F = [f 1,f 2, · · · ,f n] of a video, we model a
correlation matrix M to compute the residual error εc of feature f c at time step
c. Based on the subset Fc = [f 1,f 2, · · · ,f c], εc and M are initialized as ε1 = 0
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and M = (f T
1 f 1)

−1. The correlation coefficient πc and residual error εc at time
step c (2 ≤ c ≤ n) are learned by:

⎧
⎪⎨

⎪⎩

πc =MFc−1
Tf c

εc =(f c−Fc−1πc)
T (f c−Fc−1πc)=

∥
∥
∥f c−Fc−1MFc−1

Tf c

∥
∥
∥

2 (8)

Then, the matrix M is updated as follows:

M =
[

M + πT
c πcεc −πc/εc

−πT
c εc 1/εc

]

(9)

where M indicates the inherent linear correlation of Fc, πc builds the relevance of
Fc−1 to f c, and Fc−1πc is the approximate reconstruction of f c by using Fc−1 at
time step c. Thus, we acquire ε = [ε1, · · · , εc, · · · , εn].

Previous works captured optimal subsets by selecting discrete frames; however,
as shown in Fig. 6, the RSS curve tackles the continuous key and non-key variable-
length clips (e.g., invalid segments for word-to-word conversion). Each peak on the
RSS variable curve represents the local maximum gain of continuous variations.
We keep the monotonously increasing part of ε curve as profit—a key clip,
because the residual error increases, it cannot be replaced by the previous frame.
Thereafter, the ε gradually decreases along the monotonically decreasing portion
of the curve, where the monotonically increasing parts are denoted as non-key
clips. This indicates that the reduced portion can be linearly reconstructed from the

Fig. 6 Curve of ε of a video. Each peak corresponds to a sign’s discriminative gesture
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previous frame’s downward error. To summarize, we avoid over-learning of non-key
fragments in videos.

2.3 Hierarchical LSTM Encoder

The HLSTM model is a three-tier LSTM encoder architecture. The top LST M1
is responsible for extracting the recurrent representation based on the 3D spatio-
temporal features F = [f 1,f 2, . . . ,f n] obtained by the well-known C3D [27].
And then, with the use of pooling and attention-based weighting, we condense the
length of LST M1 features into n′′ for LST M2 and LST M3. Finally, LST M2 is
mainly used for visual embedding during the encoding stage, and LST M3 is used
for modeling word embedding during the decoding stage and for sequence learning.
LST M2 and LST M3 are both used in the encoding and decoding phases. Their
parameters are shared in these two phases.

2.3.1 Hierarchical Encoder

The input video frames (f1, · · · , fN) are encoded by using both CNN and LSTM
modules. A visual embedded representation V is learned by:

V = θlstms[G(θcnn(f1, · · · , fN))]
= θlstms[G(f 1,f 1, · · · ,f n)]
= θLST M3,LST M2,LST M1 [(f ′

1, · · · ,f ′
n′)]

= θLST M3,LST M2 (̃h1, · · · , h̃n′′)

= (v1, · · · , vn′′)

(10)

where G(·) represents the key clip mining operation. As shown in Table 8, N , n

and n′ are of variable length. We set n′′ = lave, where lave is the average of
features for all training videos. {̃h1, · · · , h̃n′′ } is the inputs for LST M2, which
is described in detail in the following section about polling and attention-based
weighting. {v1, · · · , vn′′ } is the hidden states of LST M3 during the encoding phase.

Table 8 Parameter
description

Symbol Description

N The number of original frames of a video

n The number of extracted features

n′ The number of selected features by G(·)
n′′ The number of encoding time steps of

LST M2
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2.3.2 Pooling Strategy

To condense less important clips, the outputs {ht}(t ∈ [1, n]) of LST M1 are
compressed for LST M2. As shown in Fig. 7, ht is taken as an independent sub-sign
vector if it belongs to key clips, and we perform pooling on the non-key block if ht

belongs to non-key clips. Each non-key block includes consecutive, less important
clips and the first frame of the next adjacent key clip. The pooled feature block is
defined as {ht } (t ∈ [t∗1 , t∗Tc

]), where Tc is the length of the pooling block. Three
pooling schemes can be applied as follows:

• Key-pooling: The last time stamp of the block h′
t = hkey is directly fed into

LST M2. This eliminates the effect of the non-key clips.

• Mean-pooling: Take the average vector of the block along the time dimension
as h′

t = hmean, which balances the recurrent output of each block.

• Max-pooling: The maximization of the block h′
t = hmax highlights the block’s

salient response.

After pooling, we fix the recurrent sequence {h′
t } (t ∈ [1, n′]) with variable n′ for

different video samples into the same length n′′. There are two processes: if n′ < n′′,
the sequence is filled with zero-padding vectors; if n′ ≥ n′′, {h′

t } is evenly sampled
to n′′.

2.3.3 Attention-Based Weighting

Figure 8 describes the weighting mechanism which shows the impact of each source
position on the time dimension. The learnable attention vector W ∈ R

Te is modelled
by end-to-end training h̃t = wt · h′

t , where h′
t is the pooled vector, and Te = n′′.

We denote the proposed HLSTM with or without this attention module as HLST
and HLSTM-attn, respectively.

Fig. 7 Illustration of pooling strategy on non-key clips. (a) The pooling process. (b) Different
pooling strategies
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Fig. 8 Attention-based weighting mechanism

2.4 Sentence Generation

For the decoding stage, we apply LST M2 and LST M3 for sentence generation,
where LST M3 recurrently outputs the generated sentences. With V obtained in the
encoding stage, the decoder outputs the conditional probability of the generated
sentence (y1, · · · , ym) as follows:

p(y1, · · · , ym|V ) =
m∏

t=1

p(yt |vn′′+t−1, yt−1) (11)

We take zero-padding vectors as visual input of LST M2. LST M3 starts with
<BOS>, and then inputs the previous word. During training, LST M3 is fed with
the previous ground-truth word at each step. During the test, we select the current
word (yt ) with the highest probability from the output (zt ) of LST M3 in Eq. 12, and
its word embedding is the input at the next time step.

p(yt |zt ) = exp(Wyzt )
∑

z′
t=V

exp(Wyz
′
t ) (12)

We utilize the entropy of the generated sentences to learn the model parameters θ .
Loss optimization is performed during the decoding phase.

θ∗ =argmax
θ

m∑

t=1

p(yt |vn′′+t−1, yt−1; θ)log p(yt |vn′′+t−1, yt−1; θ) (13)
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Table 9 Details of the
USTC-CSL dataset

Signers Sentences Samples

Split I Train 40 100 40 × 100 = 4000

Test 10 100 10 × 100 = 1000

Split II Train 50 94 50 × 94 = 4700

Test 50 6 50 × 6 = 300

2.5 Experiment

2.5.1 Experiment Setup

Dataset The USTC-CSL dataset consists of sign videos that cover 100 daily
sentences in Chinese sign language (CSL).1 There are 50 signers to play each
sentence, resulting in 5000 videos. And each sentence comprises 4 ∼ 8 (average 5)
sign words (phrases). The vocabulary size is 179. As shown in Table 9, the dataset is
split as follows: Split I—signer independent test: Videos played by 40 signers are
taken as the training set, and videos played by the remaining 10 signers are taken
as the test set. In other words, the training and test sets have the same sentences but
are played by different signers. Split II—unseen sentences test: 6 sentences are
selected in which words separately appeared in the remaining 94 sentences so that a
word appears in different sentences with different occurrence orders and usages.

Evaluation Metrics Precision reflects the ratio of correct sentences. Acc-w calcu-
lates the mean ratio of the correct word to the reference word in a sentence. Word
error rate (WER) [4] is used to measure the minimum number of operations to
change a generated sentence to reference. Semantic evaluation metrics widely used
in NLP, NMT and image captioning are also reported, such as BLEU, METEOR,
ROUGE-L and CIDEr.

2.5.2 Model Validation

We set the LSTM hidden state to nhid = 1000. Features are extracted by C3D,
which crops from every 16 frames with 8 frames overlapping [27].

Evaluation on Pooling Strategies The results in Table 10 demonstrate the prop-
erties of the pooling schemes. Key-pooling maintains the recurrent character on
the time dimension, mean-pooling averages the recurrent output, and max-pooling
emphasizes the significant responses. For Split I, mean-pooling is superior, whereas
max-pooling performs better for Split II. Thus, we set mean-pooling and max-
pooling for Split I and Split II, respectively.

1http://mccipc.ustc.edu.cn/mediawiki/index.php/SLR_Dataset.

http://mccipc.ustc.edu.cn/mediawiki/index.php/SLR_Dataset
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Table 10 Comparison on
different pooling strategies

Pooling strategy Precision on Split I Acc-w on Split II

Key-pooling 0.920 0.479

Mean-pooling 0.924 0.458

Max-pooling 0.912 0.482

Table 11 Comparison on
different encoder frameworks

Model Precision

S2VT (n = 21) 0.897

S2VT (n = 66) 0.850

S2VT (3-layer, n = 21) 0.903

S2VT (3-layer, n = 66) 0.854

HLSTM (SYS sampling) 0.910

HLSTM 0.924
HLSTM-attn 0.929

Evaluation on n′′ Settings In the experiments, 66 is the maximum length of video
C3D features of all training samples, and 21 is the average length. Note that N , n and
n′ are variable length for different videos. When n′′ = 66, it recursively leads to all
the sequence representations; if n′′ = 21, compression features provide an average
length. As shown in Table 11, n′′ = 21 performs better compared to n′′ = 66. When
n′′ = 66, there is little benefit in adding useless padding vectors to the LST M2 and
LST M3 layers.

Evaluation on Encoder Frameworks Table 11 lists five similar but different
encoding methods. Observing Table 11, encoders with fixed LSTM length have
lower performance, such as S2VT and S2VT (3-layer). We extend S2VT to S2VT
(3-layer) and make further comparisons. The S2VT (3-layer) encoder is a 3-layer
LSTM of equal length, while the 2-layer decoder as our own. The hierarchical
recurrent encoder performs better. In addition, the settings of the 3-layer encoder is
better than the 2-layer as it combines the recurring features by the top layer LSTM.
The system sampling is inferior to variable length key clip mining, and HLSTM-attn
is superior with temporal attention.

2.5.3 Comparison to Existing Methods

Summary on Seen Sentences We compare the proposed approach with the
following methods: LSTM&CTC model,2 S2VT [28], LSTM-E [22], LSTM-
Attention [33] and LSTM-global-Attention [21]. In the following experiments,
if not explicitly stated, our HLSTM used only C3D features without temporary
attention. HLSTM selects the mean pooling for Split I and the max pooling for
Split II. As for extensions, HLSTM (SYS Sampling) has removed the selection of

2https://github.com/baidu-research/warp-ctc

https://github.com/baidu-research/warp-ctc
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key clips and directly inputs the outputs of LST M1 into LST M2 through system
sampling in HLSTM. HLSTM-attn introduces temporal attention into HLSTM. The
HLSTM models perform better than the others. Among different settings, HLSTM-
attn performs the best (Table 12).

Experiment on Unseen Sentences Unseen sentences give a new challenge for
SLT than seen sentences. In the test Split II, the words appear in different videos.
Various variants of HLSTM are still better than other methods at identifying more
meaningful words, as shown in Table 13.

3 Dense Temporal Convolution Network for Sign Language
Translation

3.1 Introduction

Due to the lack of precise mapping annotation between visual actions and text
words, sign language sentence translation (SLT) is a weakly supervised task.
Aligning sign actions and the corresponding words is the goal of this work; thus,
Dense Temporal Convolutional Network (DenseTCN) is proposed to capture actions
in a hierarchical view [11]. The overview of DenseTCN is shown in Fig. 9; a
temporal convolution (TC) unit is used to learn the short-term correlation between
adjacent features, and is further expanded into a dense hierarchical structure. Finally,
the output sets of all the previous layers will be integrated together at the kth TC
layer. The merits of DenseNet consist of: (1) the deeper TC layer captures longer-
term temporal context through hierarchical content aggregation, and (2) leveraging
short-term and extended long-term sequential learning is useful to address the
sequential alignment in the SLT task. The CTC loss and a fusion strategy are used
to refine the predicted sentences.

3.2 DenseTCN

Different from classical RNN cells, TC is a convolutional operation to tackle short-
term temporal calculation. DenseNet captures long-term temporal context through
hierarchical TC layers. Taking the k−th TC layer as an example, the technical details
of TC are shown in Fig. 10; using TC on the input feature matrix Hk = {hi}Mi=1 ∈
R

k×M×d ′
, it is transformed into the output feature matrix {h′

i}Mi=1 ∈ R
M×d ′

, where
M is the length of the feature sequence and d ′ is the feature dimension. Specifically,
each TC layer embeds all the outputs of previous TC layers into a new compact
representation. The parameters of the kth(k > 0) TC layer are defined as [number
of filters, k, n, the input feature dimension, padding, stride]. As shown in Fig. 10,
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Fig. 10 Detailed operations of the TCk layer (e.g. k = 4, n = 3)

we set the parameters to [d ′, k, 3, d ′, 1, 1], where n = 3 indicates associating three
adjacent features to realize short-term awareness. Hk and Ok represent the input
and output of the kth TC layer, respectively. The calculation of the TC layer is
formulated as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

H0 =F ∈ R
M×d , if k = 0

Hk =[Ok−1,Ok−2, . . . , O0] ∈ R
k×M×d ′

, else;
O0 =�(H0) ∈ R

M×d ′
, if k = 0

Ok =T Ck(Hk) ∈ R
M×d ′

, else;

(14)

where H0 = F denotes the original features and function � denotes a FC layer
that transforms the d-dimension features to d ′. After each TC layer, we employ
activation functions and Dropout [20] to avoid over-fitting. By cascading the outputs
of all previous calculation layers, DenseNet expands the temporal receptive fields in
the hierarchical design.
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3.3 Sentence Learning

3.3.1 CTC Decoder

Each TC layer is followed by a fully connected (FC) layer, which converts each
densely encoded feature into a word vocabulary to predict consecutive possible
words. V oc is a set of all the words in the training set. and we add a blank word
‘_’ to the vocabulary V oc to build a new vocabulary V oc′=V oc ∪ {‘_’}.

pk = FCk(Ok) = Ok · Wk + bk , (15)

where pk ∈ R
M×w = {pi

k}Mi=1 is a predicted score matrix of the kth TC layer and w

is the size of the vocabulary V oc′.
CTC [7] is adopted as the objective function to decode sentences. CTC applies

a many-to-one mapping operation B, which deletes the blank words and repeated
words in πk , e.g. B(_ a a _ _ pencil)= {a pencil}, to convert πk into a variable sen-
tence Y = {apencil}. Therefore, the probability of a labeling Y = (y1, y2, . . . , yL)

containing L words is the sum of the probability that all words are aligned as
follows:

Pr(Y|pk) =
∑

πk∈B−1(Y)

Pr(πk|pk) (16)

where B−1(Y) = {πk|B(πk) = Y} involves all possible paths {πk}. And the
probability of a path πk is defined as follow:

Pr(πk|pk) =
M∏

j=1

Pr(πk,j |pk),∀πk,j ∈ V oc′ (17)

where πk,j is the j th element of πk .
A hierarchical CTC optimization is the novelty of this work. Let P = {pk}Kk=1

be the input of all the CTC decoders, where K is the depth of the DenseTCN, and
the total CTC loss is defined as follows:

LCT C = − log Pr(Y|P) = −
K∑

k=1

log Pr(Y|pk) (18)

3.3.2 Score Fusion and Translation

Until now, we obtain a probability score set P = {pk}Kk=1, where pk ∈ R
M×w and

w is the size of vocabulary. We choose the softmax operation to normalize each
probability pk , and further sum all the normalized variables of {pk}.
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pi
f usion,j = 1

K

K∑

k=1

e
pi

k,j

∑w
j ′=1 e

pi
k,j ′

(19)

Next, we use the function argmax on pi
f usion and output the ith word classification

label with the maximum value. At last, we have to delete the blank ‘_’ and
reduplicate words by the above-mentioned two-stage greedy strategy, and output
the final generated sentence.

3.4 Experiments

3.4.1 Datasets

We evaluated our method on the German sign language dataset (PHOENIX),3 which
involves daily news and weather forecasts in German sign language. As shown in
Table 14, it consists of 6841 videos executed by 9 signers.

3.4.2 Evaluation Metrics

Word error rate (WER) is a widely used metric to measure the similarity of two
sentences. The distance from a generated sentence to the ground-truth is required
to be the minimal operations of substitution (S), deletion (D), and insertion (I ). We
use G to indicate the number of words in the ground truth, and WER is formulated
as follows:

WER = (S + D + I )/G × 100% (20)

When WER is lower and accuracy is higher, the model is better. Further, auxiliary
evaluations del and ins represent the ratio of delete and insert operations as follows:

del = D/G × 100%, ins = I/G × 100% (21)

Table 14 Details of
PHOENIX dataset

Signers Sentences Videos Words

TRAIN 9 5672 5672 1231

VAL 9 540 540 461

TEST 9 629 629 497

3https://www-i6.informatik.rwth-aachen.de/$\sim$koller/RWTH-PHOENIX/.

https://www-i6.informatik.rwth-aachen.de/$sim $koller/RWTH-PHOENIX/
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3.4.3 Implementation Details

For data processing, each video is divided into clips with 8 frames and an
overlapping 4 frames to get 190,536 clips of the TRAIN subset, 17,908 clips of
the VAL subset and 21,349 clips of the TEST subset of the PHOENIX dataset. We
extract clip features with a dimension of 512 through an 18-layer 3D-ResNet [13]
pre-trained on the SLR dataset [34]. The linear function � transforms d-dimensional
features to d ′. Here, d=512. The parameters of the kth(k > 0) TC layer are defined
as [number of filters, k, n, the input feature dimension, padding, stride]. As
mentioned earlier, the parameters of the kth TC are set to [d ′, k, 3, d ′, 1, 1]. We
discuss d ′ in the latter Sect. 3.4.4. For the PHOENIX dataset, the input feature
dimension size is 512, and the size of vocabulary is 1232. The activation function
ReLU [20] is adopted after each TC layer. We train the DenseNet model with
ADAM optimizer and dropout ratio ρ = 0.5 on each TC layer. The initialized
learning rate is 10−4 and the weight attenuation is 10−5. After 30 training epochs,
the learning rate changes to be 0.9 times of the original. The training is constrained
to stop while the learning rate is lower than 10−6. Dropout is not considered during
the testing phase.

3.4.4 Depth Discussion

In the experiments, the minimum network depth K is 1 and the maximum is 16. We
test different depths in the two cases with or without (w/o) dropout. As shown in
Fig. 11, the experimental results demonstrate that on the PHOENIX VAL dataset,
the performance with dropout and a deeper dense network is better. Observing the
experimental results, we set the empirical parameter K to 10, and embedding size
d ′ to 512 for the PHOENIX dataset.

3.4.5 Comparison

As shown in Table 15, the symbol � marks the models that introduce other features,
such as “face image”; � indicates that additional offline optimizations are used,
e.g., multiple EM iterations are used for weak supervision in the hybrid CNN-
HMM (CNN-Hybrid) model [19]. We analyze the differences between the models
in Table 15. HMM-based models include HOG-3D and CMLLR, which employ
hand-crafted features [16]. Based on deep features, Cui et al. developed a three-
steps training optimization named staged-Opt [5]. 1M-Hands [17] and SubuNets [1]
consider more visual clues, i.e., both hands and global images. LS-HAN solves the
SLT task by an attention mechanism [14]. Through the offline EM optimization,
[24] Dilated-CNN was trained five times. CTF-SLT [32] applies BGRU and TCOV
to tackle long-term and short-term sequential learning respectively. Dense TC
operation and the hierarchical CTC optimization are the main contributions of
this work. Our proposed approach is superior to other methods. Figure 12 shows
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Fig. 11 Performance of DenseTCN with different depths on PHOENIX VAL set

Table 15 Evaluations under
PHOENIX

VAL TEST

Methods del/ins WER del/ins WER

HOG-3D � 25.8/4.2 60.9 23.2/4.1 58.1

CMLLR � 21.8/3.9 55.0 20.3/4.5 53.0

1M-Hands � � 16.3/4.6 47.1 15.2/4.6 45.1

CNN-Hybrid � � 12.6/5.1 38.3 11.1/5.7 38.8

Staged-Opt � � 13.7/7.3 39.4 12.2/7.5 38.7

SubuNets � 14.6/4.0 40.8 14.3/4.0 40.7

Dilated-CNN � 8.3/4.8 38.0 7.6/4.8 37.3

LS-HAN – – – 38.3

CTF-SLT 12.8/5.2 37.9 11.9/5.6 37.8

DenseNet* – 49.7 – 49.2

Our DenseTCN 10.7/5.1 35.9 10.5/5.5 36.5

�: Other modality, �: Extra supervision

the translation process in DenseTCN with K = 10 layers. With reference to the
“ground-truth”, the WER value of the translated sentence of each TC layer is in
the range of 50% to 8%. As a result, the deletion (D) words (“MOEGLICH”
and “VERSCHIEDEN”), the insertion (I ) word (“UNTERSCHIED”), and the
substitution (S) words (“WIND” and “loc-REGION”) are modified with all the TC
layers.
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Fig. 13 The framework of the proposed CTM method for online SLT. Except for the Temporal
Convolution Pyramid (TCP) module for feature extraction, the CTTR (Connectionist Temporal
TRanslation) module is designed to generate sequential words that are further taken as supervision
to optimize FCLS (Feature CLaSsification) and FCOR (Feature CORrelation) modules. Thus, the
entire CTM method is learned in a pseudo-supervised mode

4 Joint Optimization for Translation and Sign Labeling

4.1 Introduction

Online sign translation faces challenges of hybrid semantic learning, such as visual
representation, textual grammar, and sign linguistics. A Connectionist Temporal
Modeling (CTM) framework is proposed for sentence translation and sign label-
ing [10]. As shown in Fig. 13, in order to obtain short-range temporal correlations,
we designed a Temporal Convolution Pyramid (TCP) module to convert 2D CNN
features to pseudo 3D′ features. After feature fusion of 2D and pseudo 3D′ features,
the fused features are fed into three optimization modules in the CTM frame-
work, i.e., Connectionist Temporal TRanslation (CTTR), Feature CLaSsification
(FCLS), and Feature CORrelation (FCOR) for long-range sequential learning.
Besides, dynamic programming is embedded into the decoding process, which maps
sequential features to sign labels and generates sentences. During the connectionist
decoding process, we regard the classification labels of clips as pseudo-labels, which
are used as pseudo-supervised hints in the end-to-end framework. To be specific, we
designed a joint objective function combining Lf cor , Lcttr , and Lf cls to optimize
the decoding phase.
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4.2 Clip Feature Learning in Videos

In this part, we clarify the clip-level feature extraction of two-stream CNNs, i.e.,
the alignment and fusion of 2D and 3D features. At first, motivated by the �t-
gram language model in the field of natural language processing, we propose a
Temporal Convolution Pyramid (TCP) module to obtain contiguous features. The
TCP gradually condenses temporal cues via multi-layer convolution operations with
contiguous �t-items. We use an l-layer TCP to transform the original 2D frame

features {f2d} ∈ R
d0×N into pseudo clip-level features {f ′

3d} ∈ R

dl× N
∏l

i=1(si ) . The
embedding process of features in TCP is expressed as Eq. 22.

{f ′n
3d}Nn=1 =T CL	l

{

· · ·
[
T CL	1(f

n
2d |Nn=1)

]}

(22)

where 	i represents the parameter of T CLi in TCP, and 	i =(chi , di , �ti , si , padi)
denotes the format of a convolutional parameter (number of channels, height, width,
stride, and padding). di × �ti denotes the convolutional kernel size, and si is the
temporal sliding window. Here, di+1 = chi , i.e., the kernel size for the (i+1)-th
layer, is set to the output dimension of the i-th layer. In other words, TCP is a
combination of 2D spatial and 1D temporal convolution to compact a 2D clip into
a 3D feature. We deem this operation as pseudo 3D′ features, rather than real 3D
CNN operations.

As shown in Fig. 14, a three-layer TCP is realized with (�ti = 2)-gram and as
non-overlapping (si = 2); the frame-level 2D features are transformed into a short
clip-level 3D feature. After that, we fuse the f ′

3d and f 3d by the MLP, which can
be formulated as Eq. 23.

F f us = {
f n

}N

n=1 = MLP(f ′
3d ⊕ f 3d) (23)

where ⊕ is the concatenation operation for feature vectors.
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Fig. 14 TCP module for pseudo 3D′ feature extraction
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4.3 Joint Loss Optimization

After feature fusion, we tackle long-range sequential learning. First, we discuss the
CTTR module which generates the predicted sentence π = {πn}Nn=1. In order to
further improve the temporal correlation and classification accuracy of features, we
construct a pseudo-supervised learning framework. Here, π = {πn}Nn=1 is regarded
as pseudo-labels of words for alignment learning of sequential features. According
to the pseudo-labels, the FCLS module and the FCOR module respectively calculate
the entropy of feature classification and the similarity of feature samples with the
same or different labels. Both of the above two modules prevent the CTTR module
from overfitting the training data. We combine the three loss functions Lf cor , Lcttr ,
and Lf cls to jointly optimize the model. The entire loss function is expressed as
Eq. 24.

L = 1

|S|
∑

Lcttr + 1

|M|
∑

Lf cls + 1

|T |
∑

Lf cor (24)

where S , M and T respectively represent the set of training samples, the set of clip-
level features and the set of all pseudo triplets. Lcttr is expressed in Eq. 25, while
Lf cls and Lf cor will be given in Eqs. 26 and 28.

4.3.1 CTC Loss for CTTR Module

The CTTR module is composed of a BGRU and CTC-decoder. BGRU is adopted
to encode long-term temporal hints of visual features. Then, a fully connected
layer embeds the embedding sequential features into non-normalized categorical
probabilities {pn}. Following the same operations as Eqs. 16 ∼ 18 in Sect. 3.3.1 of
DenseTCN, we take the CTC loss as the objective function of the CTTR module, as
shown in Eq. 25.

Lcttr =−
∑

π∈B−1(Y)

∑

n∈N

log(pπn
n ) (25)

where B−1(Y) represents the set of alignments from the decoding path π to the
target sentence Y . Note that the CTC decoder selects the word label with the
maximum value in each probability vector pn to compose the generated sentence,
which are regarded as pseudo-labels for the loss calculation in the following FCLS
and FCOR modules.
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4.3.2 Cross-Entropy Loss for FCLS Module

We use an FC layer with batch normalization and softmax to realize the FCLS
module. This module obtains the predicted probability of each clip-level feature
from the fusion feature {f n}. Based on the assumption that the pseudo-label
is reliable, the optimization goal of the network is to make the new predicted
probabilities trend toward the pseudo-labels. We calculate the cross-entropy loss
to evaluate the distance between the predictions and the pseudo labels as Eq. 26.

Lf cls(M) = −
∑

m∈M

∑

k∈K

yk
m log(pk

m) (26)

where pk
m represents the predicted probability of the sample m calculated by the

FCLS module. yk
m is a boolean value indicating whether the label of the sample m

is πm according to the output of CTTR.

4.3.3 Triplet Loss for FCOR Module

We design a triplet loss to promote the features with the same label to gather in the
embedding space, while the features with different labels are far away from each
other. In the FCOR module, FC with batch normalization is used to model features
into the embedding space to obtain new features {f n}.

According to the word decoding path π with the maximum probability of
P π

max , the embedding features are divided into different groups. Specifically, clip
features with the same label are classified as positive pairs, denoted as (e+, e+);
while clip features with different labels are regarded as negative pairs, denoted
as (e+, e−) and (e−, e+). Thus, the set of all sample pairs can be represented
as T = {(e+, e+), (e+, e−), (e−, e+)}. Taking the video shown in Fig. 15 as an
example, e1 and e6 are (e+, e+), while e1 and e2 are (e+, e−) or (e−, e+). We use
colored squares and gray squares in the matrix to represent positive and negative
pairs, respectively. Here, we ignore self-pairs (along the diagonal) and pairs with
blank label samples (squares with snowflake dots). The constraint of the distance of
positive and negative pairs is formulated in Eq. 27.

⎧
⎪⎨

⎪⎩

s(e+, e+) > s(e+, e−) + α

s(e+, e+) > s(e−, e+) + α

s.t. s(a, b) = aT b
‖a‖‖b‖ = L2(a)T · L2(b)

(27)

where s(a, b) represents the similarity function with samples a and b, and L2
denotes L2-normalization. We use parameter α to control similarity intensity during
the training process.

Then, we implement the measurement of triplet loss. For each batch, we
randomly select the same number of negative pairs as positive pairs, and perform
the triplet loss calculation as follows:
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Fig. 15 Calculation of triplet loss with different labels. e3 indicates the blank label

Lf cor (T )=
∑

t∈T
max(s(tneg)−s(tpos)+α, 0)

=
∑

t∈T
max(s(tneg)−β, 0)+

∑

t∈T
max(β−s(tpos), 0)

(28)

where β controls similarity intensity in the training process.

4.4 Experiment

4.4.1 Experiment Setup

Dataset and Evaluation We conduct experiments on RWTH-PHOENIX-Weather
(PHOENIX) [16] and USTC-CSL—Split II [14] datasets for unseen sentences test.
We adopt Word Error Rate (WER) [18] as the evaluation metric, which measures
the minimal cost of insertion, deletion, and replacement operations during sequence
conversion. For a sequence of length |L|, the proportions of inserted and deleted
words are recorded as ins and del, respectively.

Implementation The resolutions of sign videos in the PHOENIX and USCT-CSL
datasets are 210 × 260 pixels and 1280 × 720 pixels, respectively. We crop out the
area covering the human body from the original frames and resize them to 224×224
pixels. We extract features with four-frames overlapping, and parameter setting of
the TCP module are shown in Table 16, where the parameter d0 = d1 = d2 =
d3 = 512-dim. We adopt the ADAM optimizer with batch size 40, and set the initial
learning rate to 1×10−4. The learning rate is reduced by 1/10 every 20 epochs until
the learning rate becomes 1×10−6. ReLU and Dropout operations are adopted after
each TCL layer, and the Dropout parameter is set to 0.2.
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Table 16 Parameter setting
of the TCP module

Input size Layer Kernel, channel, stride Output size

t × d0 TCL1 2 × d0, d1, 2 (t/2) × d1

TCL2 2 × d1, d2, 2 (t/4) × d2

TCL3 2 × d2, d3, 2 (t/8) × d3

Table 17 Performance
comparison on the PHOENIX
dataset with different features
and Lcttr loss

VAL(%) TEST (%)

Features del/ins/WER del/ins/WER

f2d 55.1/1.5/69.4 53.6/1.8/68.3

f ′
3d 27.5/5.8/63.6 26.8/6.1/62.2

f3d 21.0/5.1/45.1 20.0/5.5/45.4

f ′
3d + f3d 10.5/7.3/42.2 10.8/7.8/42.2

Fusion{f ′
3d ,f3d } 10.6/6.9/41.0 10.1/7.9/41.3

Table 18 Performance
comparison using different
losses on PHOENIX dataset

VAL (%) TEST (%)

Loss del/ins/WER del/ins/WER

Lcttr 10.6/6.9/41.0 10.1/7.9/41.3

Lcttr+Lf cls 10.2/6.7/39.9 10.3/7.7/40.2

Lcttr+Lf cor 11.3/6.7/39.8 10.9/6.9/40.0

Lcttr+Lf cls+Lf cor 11.8/5.9/38.9 10.6/6.1/38.7

4.4.2 Model Validation

To verify the TCP module, we conducted experiments with different features. As
shown in Table 17, the del value of f2d is 55.1%, which is much worse. TCP
improves the performance with 27.5%. Compared to direct addition of f3d

′ and
f3d , MLP fusion has better performance, and the WER value is reduced from
42.2% to 41.3% on the TEST set. We test the effectiveness of the pseudo-supervised
learning framework. As shown in Table 18, the introduction of Lf cls improves the
performance by 1.1% on both VAL and TEST sets. With the auxiliary of Lf cor ,
the model learns the similarities and differences between clip-level representations,
thereby further reducing the WER on the VAL and TEST sets by 1.0% and 1.5%.
When using Lcttr , Lf cls , and Lf cor simultaneously, CTM can achieve the best
results (Fig. 16).

4.4.3 Main Comparison

Here, the proposed model is compared to the state-of-the-art. We observe two
obvious conclusions from Table 19. (1) The previous work always introduces
extra visual hints to improve the performance, such as using visual representations
of face or hands, and pose trajectory. In addition, the pre-trained sign language
vocabulary is utilized in 1M-Hands [18], while CNN-Hybrid [17] introduces
additional supervision. In contrast, our method has no extra hints and additional
supervision. (2) Most methods use offline iterations, such as 1-M-H, CNN-Hybrid,
Staged-Opt [5], and DCNN [24]. Without offline optimizations, our CTM achieves
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Fig. 16 Sentence decoding results using different setting of features and losses. “S” and “D”
represent substitution and deletion operations

Table 19 Comparison with the state-of-the-art on the PHOENIX dataset

Off-line Extra VAL (%) TEST (%)

Methods Iterations Augmentation des/ins/WER des/ins/WER

HOG-3D [16] –
√

25.8/4.2/60.9 23.2/4.1/58.1

CMLLR [16] –
√

21.8/3.9/55.0 20.3/4.5/53.0

1-M-H [18] 3
√

19.1/4.1/51.6 17.5/4.5/50.2

1-M-H+CMLLR [18] 3
√

16.3/4.6/47.1 15.2/4.6/45.1

CNN-Hybrid [17] 3
√

12.6/5.1/38.3 11.1/5.7/38.8

Staged-Opt-init [5] –
√

16.3/6.7/46.2 15.1/7.4/46.9

Staged-Opt [5] 3
√

13.7/7.3/39.4 12.2/7.5/38.7

SubUNets [1] –
√

14.6/4.0/40.8 14.3/4.0/40.7

DCNN-init [24] – 18.5/2.6/60.3 18.1/2.8/59.7

DCNN [24] 5 8.3/4.8/38.0 7.6/4.8/37.3
Our Method – 11.6/6.3/38.9 10.9/6.4/38.7

“Extra Augmentation” refers to the date of face, hand or trajectory. “Off-line Iterations”
represents the number of iterations during offline optimization, and “-” indicates the framework
was trained in an end-to-end manner

better performance than HOG-3D [16], CMLLR [16], SubUNets [1], Staged-Opt-
init and DCNN-init. It is worth noting that Staged-opt and DCNN obtain good
performance through offline iterative optimization. Their initial results of WER
reduce rapidly to 46.9% and 59.7% on the test dataset, which are much lower than
the values obtained by our approach. Note that offline iteration requires repeated
training. The optimization process is time-consuming. Our CTM model does not
suffer from this limitation and achieves comparable performance to these offline
iterative models.

From the results of Table 20, the proposed CTM achieves the best performance
on the USTC-CSL dataset with performance improvements of 2.2∼5.1% compared
with other models. Different from S2VT and HLSTM based on the encoder-
decoder framework, CTM directly utilizes connectionist temporal modeling along
the temporal dimension, which is also more flexible for online SLT.
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Table 20 Comparison with
the state-of-the-art on the
USTC-CSL dataset

Methods TEST WER (%)

S2VT [28] 67.0

S2VT(3-layer) [33] 65.2

HLSTM [9] 66.2

HLSTM-attn [9] 64.1

Our method 61.9
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