

Connectionist Temporal Modeling of Video and Language: a Joint Model for Translation and Sign Labeling

Dan Guo, Shengeng Tang and Meng Wang

Lab of Media Computing Hefei University of Technology

Introduction

- Method
- **Experiments**
- **Conclusion**

What is Continuous Sign Language Translation (CSLT)?

Isolated Sign Language Recognition (ISLR) vs. CSLT

Word: 100

Phrase: 2-3-9-7

Short sentence: A fly in the soup.

Long sentence: Even though my mother passed away years ago, I still feel her presence in this home.

What are the challenges in CSLT?

Potential Semantics

• Visual hints under sign linguistics are latent and obscure.

Hybrid Tasks

• CSLT involves hybrid semantics learning under vision understanding, sign recognition, and natural language translation.

Weak Supervision

• Sign videos have sentence-level annotations, rather than the exact temporal location of each sign action.

Existing methods and their drawbacks

- Traditional Temporal Models: Dynamic Time Warping (DTW) and Hidden Markov Models (HMM).
- A lot of time is spent on training the network.

Encoder-decoder Framework

• These proposed methods decoded word by word after encoding all visual content. They **do not apply to online CSLT**.

> Hybrid Models + Offline Optimization: CNN+RNN+EM

• Offline iteration takes a lot of time, and it is often trained repeatedly using fixed datasets, which is not applicable to dataset extension.

Overview: <u>C</u>onnectionist <u>T</u>emporal <u>M</u>odeling network

- Feature Extraction: 2D frame-level features, 3D clip-level features
- **Temporal Alignment & Fusion:** The TCP module is used to learn the short-term temporal correlation in the 2D features and align them with the 3D features.
- Joint Loss Optimization: $Loss_{fcor}$, $Loss_{cttr}$ and $Loss_{fcls}$ is designed to measure feature correlation, sentence decoding, and entropy regularization on sign labeling.

Clip Feature Learning (<u>Temporal</u> <u>Convolution</u> <u>Pyramid</u>)

Clip Feature Learning (<u>Temporal</u> <u>Convolution</u> <u>Pyramid</u>)

<u>C</u>onnectionist <u>**T**</u>emporal <u>**TR**</u>anslation</u>

Decoding Example: I _ I have _ a a _ pencil → I I have a a pencil → I have a pencil

- Temporal Encoding:
 - $H = \{h_n\}_{n=1}^N = \{BGRU(f_n)\}_{n=1}^N \qquad P = \{p_n\}_{n=1}^N = \varphi_{softmax}\{FC(h_n|_{n=1}^N)\}$

Decoding Optimization:

$$P^{\pi} = Prob(\pi) = \prod_{n=1}^{N} p_n^{\pi_n} \qquad \qquad L_{cttr} = \sum_{\pi = B^{-1}(y)} -log P^{\pi} = \sum_{\pi = B^{-1}(y)} \sum_{n=1}^{N} P_n^{\pi_n}$$

Joint Loss Optimization (Loss_{cttr} + Loss_{fcls} + Loss_{fcor}) Pseudo-supervised Online Learning

Dataset and Evaluation

Dataset1: RWTH-PHOENIX-Weather 2014 (PHOENIX) German Weather Sign Language Dataset. The training, verification and test set do not overlap each other.

Dataset2: USTC Chinese Sign Language (USTC-CSL)

Chinese Sign Language Dataset from USTC. The training set and the test set contain different sentences.

Dataset	Split	Signers	Sentences	Videos	Words
	TRAIN	9	5,672	5,672	1,231
PHOENIX	VAL	9	540	540	461
	TEST	9	629	629	497
USTC-CSL	TRAIN	50	94	4,700	178
	TEST	50	6	300	20

Evaluation Criterion: Word Error Rate (WER)

$$WER = \frac{\#ins + \#sub + \#del}{\#num_words} \times 100\%$$

How much effect does each module have on the results?

An example of decoding results.

Mathada	Off-line	Modality		VAL(%)		TEST(%)		
Methods	Iterations	hand	traj	face	des / ins	WER	des / ins	WER
HOG-3D [Koller et al., 2015]	-				25.8/4.2	60.9	23.2/4.1	58.1
CMLLR [Koller et al., 2015]	-	\checkmark			21.8/3.9	55.0	20.3 / 4.5	53.0
1-Mio-H [Koller <i>et al.</i> , 2016a]	3				19.1/4.1	51.6	17.5/4.5	50.2
1-Mio-H+CMLLR [Koller et al., 2016a]	3				16.3 / 4.6	47.1	15.2/4.6	45.1
CNN-Hybrid [Koller et al., 2016b]	3				12.6/5.1	38.3	11.1 / 5.7	38.8
Staged-Opt-init [Cui et al., 2017]	-				16.3 / 6.7	46.2	15.1/7.4	46.9
Staged-Opt [Cui et al., 2017]	3				13.7 / 7.3	39.4	12.2/7.5	38.7
SubUNets [Camgoz et al., 2017]	-				14.6/4.0	40.8	14.3 / 4.0	40.7
Dilated-CNN-init [Pu et al., 2018]	-				18.5/2.6	60.3	18.1/2.8	59.7
Dilated-CNN [Pu et al., 2018]	5				8.3 / 4.8	38.0	7.6/4.8	37.3
Our Method	-				11.6/6.3	38.9	10.9 / 6.4	38.7

Mathoda	Off-line	Off-line Modality		VAL(%)		TEST(%)		
Methous	Iterations	hand	traj	face	des / ins	WER	des / ins	WER
HOG-3D [Koller et al., 2015]	-				25.8/4.2	60.9	23.2/4.1	58.1
CMLLR [Koller et al., 2015]	-				21.8/3.9	55.0	20.3 / 4.5	53.0
1-Mio-H [Koller <i>et al.</i> , 2016a]	3				19.1/4.1	51.6	17.5/4.5	50.2
1-Mio-H+CMLLR [Koller et al., 2016a]	3				16.3 / 4.6	47.1	15.2/4.6	45.1
CNN-Hybrid [Koller et al., 2016b]	3		•		12.6/5.1	38.3	11.1 / 5.7	38.8
Staged-Opt-init [Cui et al., 2017]	-				16.3 / 6.7	46.2	15.1/7.4	46.9
Staged-Opt [Cui et al., 2017]	3				13.7 / 7.3	39.4	12.2/7.5	38.7
SubUNets [Camgoz et al., 2017]	-				14.6/4.0	40.8	14.3 / 4.0	40.7
Dilated-CNN-init [Pu et al., 2018]	-				18.5/2.6	60.3	18.1/2.8	59.7
Dilated-CNN [Pu et al., 2018]	5				8.3 / 4.8	38.0	7.6 / 4.8	37.3
Our Method	-				11.6/6.3	38.9	10.9 / 6.4	38.7

Comparison with Offline Methods

PHOENIX: The effect is close, but the time is greatly reduced(Compared to offline optimization methods).

Mathada	Mathads		Off-line	Ν	Modality		VAL(%)		TEST(%)		
		Iterations	hand	traj	face	des / ins	WER	des / ins	WER		
HOG-3D [Koller et al., 2015]			-				25.8/4.2	60.9	23.2/4.1	58.1	
CMLLR [Koller	CMLLR [Koller et al., 2015]			-				21.8/3.9	55.0	20.3 / 4.5	53.0
1-Mio-H [Koller	et al., 201	[6a]		3				19.1 / 4.1	51.6	17.5/4.5	50.2
1-Mio-H+CMLL	R [Koller	et al., 20 et al.)16a]	3				16.3 / 4.6	47.1	15.2/4.6	45.1
CNN-Hybrid [Ko	oller <i>et al</i> .	, 2016b]		3				12.6 / 5.1	38.3	11.1 / 5.7	38.8
Staged-Opt-init [Cui <i>et al</i> .,	, 2017]		-				16.3 / 6.7	46.2	15.1/7.4	46.9
Staged-Opt [Cui	Staged-Opt [Cui et al., 2017]			3				13.7 / 7.3	39.4	12.2/7.5	38.7
SubUNets [Camg	SubUNets [Camgoz et al., 2017]			-				14.6/4.0	40.8	14.3 / 4.0	40.7
Dilated-CNN-ini	Dilated-CNN-init [Pu et al., 2018]			-				18.5 / 2.6	60.3	18.1 / 2.8	59.7
Dilated-CNN [Pu	Dilated-CNN [Pu et al., 2018]			5				8.3 / 4.8	38.0	7.6/4.8	37.3
Our Method	Our Method		-				11.6 / 6.3	38.9	10.9 / 6.4	38.7	
0.	0.0 20.0 40.0		60.0				0.0	20.0	40.0	60.0	
1-Mio-H				51.6 50.2			HOG	-3D			6 58
-Mio-H+CMLLR				47.1 45.1			CML	LR			55.0 53.0
CNN-Hybrid			38 38	3.3 3.8		Stage	d-Opt-	init			46.2 46.9
Staged-Opt		39.4 38.7		9.4 3.7		SubUNets		Nets		48:	8 7
Dilated-CNN			38 37.	.0 .3	Ι	Dilated	-CNN-	init			6 59
OurMethod			38	3.9 3.7		0	urMet	hod		38.9 38.7	
		TEST	Γ						L T E	CST	

Comparison with Offline Methods

Comparison with Online Methods

PHOENIX: The effect is close, but the time is greatly reduced(Compared to offline optimization methods). **BEST**(Compared to online optimization methods).

Methods	TEST WER(%)
S2VT [Venugopalan et al., 2015]	67.0
S2VT(3-layer) [Yao et al., 2015]	65.2
HLSTM [Guo et al., 2018]	66.2
HLSTM-attn [Guo et al., 2018]	64.1
Our Method	61.9

USTC-CSL: BEST

The Primary Contributions

- We use the different kind of visual features, and propose the TCP module to learn the short-term association between adjacent frames.
- ➤ We propose a connectionist temporal modeling network for long-term sequential learning, where the decoder embeds the dynamic optimization into online learning.
- ➤ We design a joint loss function to measure sentence translation, feature correlation, and classification accuracy based on the pseudo labels.

Thanks!

Paper ID: #323

Email: tsg1995@mail.hfut.edu.cn

