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Abstract
We propose a Connectionist Temporal Modeling (CTM) network for sentence translation and sign labeling. To acquire short-

term temporal correlations, a Temporal Convolution Pyramid (TCP) module is performed to convert 2D CNN features to

pseudo 3D’ features. CTM aligns the pseudo 3D’ with the original 3D CNN clip features and fuses them. Next, we implement

a connectionist decoding scheme for long-term sequential learning. Here, we embed dynamic programming into the decoding

scheme, which learns temporal mapping among features, sign labels, and the generated sentence directly. The solution using

dynamic programming to sign labeling is considered as pseudo labels. Finally, we utilize the pseudo supervision cues in an

end-to-end framework. A joint objective function is designed to measure feature correlation, entropy regularization on sign

labeling, and probability maximization on sentence decoding. The experimental results using the RWTH-PHOENIX-Weather

and USTC-CSL datasets demonstrate the effectiveness of the proposed approach.

⚫ Overview of the proposed CTM
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Details: Overview of the proposed CTM framework for online SLT. Given a video, we extract 2D frame-level and 3D clip-level feature streams using the pre-trained

models ResNet-18 and ResNet-3D, respectively. The TCP module is conducted on the 2D features to learn short-term temporal clues, and align them to the 3D

features. Then, the fused features are fed into three modules for long-term sequential learning. Finally, we utilize pseudo supervision cues in the online deep model.

A joint loss optimization combining Lfcor, Lcttr, and Lfcls, is designed to measure feature correlation, sentence decoding, and entropy regularization on sign labeling.
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Triplet loss calculation based on different classification groups for

feature correlation. e3 indicates a blank symbol ‘-’. In the matrix, we do

not consider diagonals and squares with snowflakes, where self-

correlation and the blank label ‘-’ have no word meaning.

⚫ Triplet Loss Calculation
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Temporal Convolution Pyramid (TCP) on 2D features.

⚫ TCP Module
2D frame-level features 3D clip-level features
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Architecture of the proposed

approach for online SLT, which

consists of a Connectionist

Temporal Translation module

(CTTR), a Feature Classification

module (FCLS), and a Feature

Correlation module (FCOR).

The middle CTTR module

decodes the connectionist

mapping among features, words,

and the generated sentence.

Pseudo supervision cue π is

utilized on both two side

modules (FCLS and FCOR).

⚫ Online SLT

⚫ Joint Loss Optimization
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Experiments

Methods Off-line
Iterations

Other
Modality

VAL(%) TEST(%)
des/ins WER des/ins WER

HOG-3D - √ 25.8/4.2 60.9 23.2/4.1 58.1
CMLLR - √ 21.8/3.9 55.0 20.3/4.5 53.0
1-Mio-H 3 √ 19.1/4.1 51.6 17.5/4.5 50.2
1-Mio-H+CMLLR 3 √ 16.3/4.6 47.1 15.2/4.6 45.1
CNN-Hybrid 3 √ 12.6/5.1 38.3 11.1/5.7 38.8
Staged-Opt-init - √ 16.3/6.7 46.2 15.1/7.4 46.9
Staged-Opt 3 √ 13.7/7.3 39.4 12.2/7.5 38.7
SubUNets - √ 14.6/4.0 40.8 14.3/4.0 40.7
Dilated-CNN-init - 18.5/2.6 60.3 18.1/2.8 59.7
Dilated-CNN 5 8.3/4.8 38.0 7.6/4.8 37.3
Our Method - 11.6/6.3 38.9 10.9/6.4 38.7

Features VAL(%) TEST(%)
des/ins WER des/ins WER

f2d 55.1/1.5 69.4 53.6/1.8 58.1
f’3d 27.5/5.8 63.6 26.8/6.1 53.0
f3d 21.0/5.1 45.1 20.0/5.5 50.2
f’3d + f3d 10.5/7.3 42.2 10.8/7.8 45.1
Fusion{f’3d , f3d} 10.6/6.9 41.0 10.1/7.9 41.3

Loss VAL(%) TEST(%)
des/ins WER des/ins WER

Lcttr 10.6/6.9 41.0 10.1/7.9 41.3
Lcttr+Lfcls 10.2/6.7 39.9 10.3/7.7 40.2
Lcttr+Lfcor 11.3/6.7 39.8 10.9/6.9 40.0
Lcttr+Lfcls+Lfcor 11.8/5.9 38.9 10.6/6.1 38.7

Performance Comparison on PHOENIX Dataset

Performance with Different Loss

Performance with Different Features Example of Decoding Words

Methods TEST WER (%)
S2VT 58.1

S2VT(3-layer) 53.0
HLSTM 50.2

HLSTM-attn 45.1
Our Method 41.3

Performance comparison on USTC-CSL


